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Abstract. A direct-forcing immersed boundary method (DFIB) with both virtual force
and heat source is developed here to solve Navier-Stokes and the associated energy
transport equations to study some thermal flow problems caused by a moving rigid
solid object within. The key point of this novel numerical method is that the solid ob-
ject, stationary or moving, is first treated as fluid governed by Navier-Stokes equations
for velocity and pressure, and by energy transport equation for temperature in every
time step. An additional virtual force term is then introduced on the right hand side
of momentum equations in the solid object region to make it act exactly as if it were
a solid rigid body immersed in the fluid. Likewise, an additional virtual heat source
term is applied to the right hand side of energy equation at the solid object region
to maintain the solid object at the prescribed temperature all the time. The current
method was validated by some benchmark forced and natural convection problems
such as a uniform flow past a heated circular cylinder, and a heated circular cylinder
inside a square enclosure. We further demonstrated this method by studying a mixed
convection problem involving a heated circular cylinder moving inside a square enclo-
sure. Our current method avoids the otherwise requested dynamic grid generation in
traditional method and shows great efficiency in the computation of thermal and flow
fields caused by fluid-structure interaction.
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Nomenclature

A dimensionless amplitude
d dimensionless displacement
D dimensionless diameter
f virtual force
F total force acting on a solid body
H total heat transfer over body surface
L dimensionless length
n normal direction
Nu average Nusselt number
p dimensionless pressure
P dimensionless parameter
Pr Prandtl number
q virtual heat source
r dimensionless gyration radius
R dimensionless radius
Ra Rayleigh number
Re Reynolds number
St Strouhal number
t dimensionless time
T temperature, K
u dimensionless velocity
V volume of a solid object
W dimensionless area
x,y horizontal and vertical cartesian coordinate
xr dimensionless recirculation length
Greek symbols
η volume of solid (VOS)
̟ non-dimensional oscillation angular frequency, ωD/us

ω oscillation angular frequency, s−1

θ non-dimensional temperature
α thermal diffusivity
Superscript
m time step level
Subscripts
f fluid
s solid
x Position

1 Introduction

Fluid-structure interactions are common phenomena in flow physics and heat transfer
problems, e.g. a uniform flow past cylinders and wind past rotating blades. Simulations
of fluid-structure interactions are challenging and difficult. First of all, the configuration
of a structure is often complex, so a distorted or unstructured grid is necessary. In addi-
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tion, given that the solid structure moves or rotates, grids will have to be re-generated
due to the movement of the solid structure. The flow and heat transfer in a jet engine
is a typical fluid-structure interaction problem. Air enters to the engine and flows past
a series of rotating blades and stators. Fuel is burned and combustion occurs in the en-
gine, so heat is generated and transmitted by the products of combustion to the rotating
blades. Simulations of the air flow and heat transfer in the jet engine become difficult
due to the complex configuration of the passageway and fast rotating blades. That is, the
fluid domain always changes and its mesh generation is costly.

To predict fluid-structure interactions accurately, a variety of computational methods
have been proposed. The most common method to simulate the flow with a compli-
cated solid boundary is to use a body-fitted technique with grids fitting and clustering
along the complex boundary. Most of time, the solid object may not be at rest and it
requires further technique to deal with a moving object. The Arbitrary Lagrangian Eu-
lerian (ALE) numerical method is a popular approach to accommodate the complicated
fluid-structure interface varying with time. In the Eulerian coordinate frame, fluids flow
through the static computational mesh. While in the Lagrangian coordinate, the mesh
moves with the solid. Arbitrary Lagrangian-Eulerian (ALE) methods introduced by Hirt
et al. [1] appear to be a reasonable compromise between Lagrangian and Eulerian ap-
proaches. The ALE method consists of several Lagrangian computational time steps fol-
lowed by a mesh rezoning and a conservative quantities remapping. The mesh rezoning
step smoothes the Lagrangian computational mesh and avoids its distortion. During the
remapping step the conservative quantities are conservatively remapped from the old
Lagrangian mesh to the new smooth one. After remapping the Lagrangian computation
continues until the next rezone/remap steps which introduce the Eulerian flavor into the
method allowing mass flux between computational cells. The rezone/remap steps keep
the quality of the moving mesh good enough during the whole computation and are
performed either regularly after fixed amount of Lagrangian time steps or when mesh
quality deteriorates under some threshold. Many scholars have described ALE strategies
to optimize accuracy, robustness, or computational efficiency [2–6]. Nevertheless, mesh
updating or re-meshing is computationally expensive for the ALE algorithm.

In addition to the ALE algorithm, the immersed boundary method is becoming pop-
ular since it was first introduced by Peskin [7] due to its capability to handle simulations
for a moving complex boundary with lower computational cost and memory require-
ments than the conventional body-fitted method. In this method, a fixed Cartesian grid
and a Lagrangian grid are employed for fluids and immersed solid object, respectively.
The interaction between fluids and the immersed solid boundary is linked through the
spreading of the singular force from the Lagrangian grid to the Cartesian grid and the
interpolation of the velocity from the Cartesian grid to the Lagrangian grid using a dis-
crete Dirac delta function. Furthermore, some modifications and improvements of this
method have been proposed by other researchers [8–11]. This method can be catego-
rized as a continuous forcing method in which a forcing term is added to the continuous
Navier-Stokes equations before they are discretized.
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Instead of using a delta function to distribute force from the Lagrangian grid to the
Cartesian grid, Mohd-Yusof [12] introduced a novel immersed boundary method, namely
the direct-forcing immersed boundary method (DFIB). This method uses a virtual forcing
term determined by the difference between the interpolated velocities at the boundary
points and the desired boundary velocities. This method is also known as a discrete forc-
ing method since the forcing is either explicitly or implicitly applied to the discretized
Navier-Stokes equations. The idea of DFIB has been used and developed successfully
in many applications [13–20]. An impressive example is the famous work by Fadlun
et al. [14] who developed a model combining the immersed boundary method and the
finite difference method for three dimensional complex flow simulations. Some cases in-
cluding the flow inside an IC piston/cylinder assembly at high Reynolds number were
simulated successfully. The major issue of their work is the extrapolation of fluid velocity
near solid-fluid interface into the interior of solids via virtual force to uphold the no-slip
boundary condition at solid-fluid interface in order to obtain the second-order accuracy
in space.

For immersed boundary methods applied to heat transfer problem, Paravento et al.
[21] introduced an immersed boundary method for heat convection problems. They
solved both a hot and insulated square body located in a 2D channel. Nevertheless, if
an irregular solid object is considered in their immersed boundary model, then interpo-
lations will be required and consequently, the advantage of their immersed model will
not exist. Vega et al. [22] proposed a general scheme for the boundary conditions in
convection and conduction heat transfer using an immersed boundary method. The mo-
mentum and energy forcing terms are imposed into momentum and energy equations
followed by the projection method to uphold the divergence free condition in a non-
staggered grid configuration. Some cases regarding heat conduction, forced and natural
convection were simulated and validated with success. Pan [23] introduced an immersed
boundary method on unstructured Cartesian meshes for incompressible flows with heat
transfer. The solid body is identified by a volume-of-body (VOB) function analogous to
the volume-of-fluid (VOF) function. This VOB approach can also be applied to the energy
equation with a Dirichlet boundary condition.

In this present work, we apply DFIB with some modifications to simulate fluid-
structure interactions with mixed heat transfer (forced and natural heat convection). The
solid object immersed within a flow field can be denoted by the volume of solid (VOS)
function η, which is defined as the volume fraction of solid in a cell. A cell fully occu-
pied by solids will be denoted as η = 1, while the one fully occupied by fluids will be
η=0. A cell occupied partly by fluids and solids, commonly called a cut cell, will have a
fractional η then. η in a cut cell sure can be determined accurately by studying how the
solid boundary cuts the cell. However, a more efficient way is to resolve the designated
Cartesian mesh to a finer one, and count the box number occupied by solids in an original
designated cell. The fraction of solid box number to the total box number in an original
cell will be a good approximation of η for that original cell. The momentum and en-
ergy equations for fluids are solved simultaneously with extra virtual forcing and energy
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source terms for a solid regime to achieve desired boundary conditions on fluids imposed
by solids. Numerical details will be described in the following section and several flow
and heat transfer problems involving a moving body are computed to demonstrate the
capability of the present scheme in handling fluid-solid interactions with heat transfer.

2 Mathematical formulae and numerical methods

2.1 The governing equations

The continuity, momentum and energy conservation laws are used as the governing
equations for fluid flows. A Newtonian fluid is considered in this study. The Boussi-
nesq approximation for the buoyancy due to the density variation of a fluid is employed.
The governing equations for an incompressible Newtonian fluid are expressed in the fol-
lowing non-dimensional forms:

∇·u=0, (2.1)

∂u

∂t
+∇·(uu)=−∇p+P1∇

2u+ηf−P2θez, (2.2)

∂θ

∂t
+∇·(uθ)=P3∇

2θ+ηq, (2.3)

where u, p and θ are non-dimensional velocity, pressure and temperature, respectively.
The dimensionless temperature is defined as θ=(T−T0)(Tw−T0), where Tw is the wall/
body temperature and T0 is a reference temperature. In (2.2), ηf represents the virtual
force only applied to solids. P2θez is the buoyancy with the direction of gravity be-
ing −ez. In (2.3), ηq represents the virtual heat source term only applied to solids to
achieve desired temperature distribution of the solid object which will further imposes
wanted thermal boundary conditions on fluids. The dimensionless parameters P1, P2

and P3 in (2.2)-(2.3) are defined differently later depending on whether the convection is
forced, natural or mixed. For forced convection without buoyancy, P1=1/Re, P2=0 and
P3=1/RePrx where Re and Prx are Reynolds number and Prandtl number, respectively.
The subscript x in Prx denotes its dependence of position x, since thermal diffusivity
α(x) = η(x)αs+(1−η(x))α f , with αs and α f being the thermal diffusivity for solid and
fluid respectively. Though thermal diffusivity is requested to be a function of position
considering realistic energy transport within solid and fluid domains, kinematic viscos-
ity ν is not requested to be so, since solid is treated as fluid with the idea of virtual forcing
under the framework of DFIB. For natural convection in which buoyancy is important,
P1 = Pr, P2 = RaPr and P3 = α(x)/α f , where Ra is Rayleigh number. Note that Pr and
Ra here again do not have to be functions of position x under the frame work of DFIB,
and they are chosen to be based on α f here. However P3, considering the realistic heat
transport, will depend on position x as the case of forced convection. As to the mixed
convection (forced convection with buoyancy considered), it is basically same as forced
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convection above (without buoyancy) with P2 set to Gr/Re2 instead of 0, where Gr is the
Grashof number.

Generally speaking, for solid-fluid conjugate heat transfer, α(x) = η(x)αs+(1−
η(x))α f , and virtual heat source ηq is not required. For solid to provide isothermal
boundary condition for fluid, α(x) is same as above, but ηq, acting as virtual heat source
here, will be nontrivial to uphold constant temperature within solid. For solid to provide
insulating boundary condition for fluid, α(x) is same as above, but with αs set to zero
throughout the solid domain to uphold no heat flux condition. Under this circumstance,
ηq will be trivial here.

2.2 Numerical method

Laminar flows are considered in this study, so no turbulence model is used in the follow-
ing procedures. A staggered grid arrangement is utilized in this study. That is, pressure
and temperature are located at the center of the computational cell while the velocities
are placed at the faces of the cell. We use the time-splitting schemes to advance velocity
and temperature in (2.2)-(2.3). First, the velocity and temperature are advanced from the
mth time level to the first intermediate level “*” by solving the advection-diffusion equa-
tions without pressure and virtual force f in (2.2) and the virtual heat source q in (2.3).
This step can be stated as the following

u∗−um

∆t
=Sm−P2θmez, (2.4)

θ∗−θm

∆t
=Hm, (2.5)

where S=−∇·(uu)+P1∇
2u and H=−∇·(uθ)+P3∇

2θ discretized by the second-order
upwind scheme for the convection term and central difference schemes for the diffusion
term. Subsequently, we use the second-order Adams-Bashforth method for the temporal
discretization with Sm and Hm expressed by

Sm=
3

2

(

−∇·(uu)+P1∇
2u

)m
−

1

2

(

−∇·(uu)+P1∇
2u

)m−1
, (2.6)

and

Hm=
3

2

(

−∇·(uθ)+P3∇
2θ
)m

−
1

2

(

−∇·(uθ)+P3∇
2θ
)m−1

. (2.7)

Viscous and diffusion terms in (2.2) and (2.3) can be alternatively treated by implicit
scheme like Crank-Nicolson method, which has the advantage of allowing a larger time
step, when Reynolds number is small. However, since the Reynolds number of many in-
teresting heat convection problems is often moderate or high and therefore the time step
constraint is dominated by CFL condition, here we just use the explicit scheme stated
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above to save overhead cost of solving Helmholtz equation at each time step due to
Crank-Nicolson scheme.

The first intermediate velocity u∗ in (2.4), in general, does not satisfy the divergence-
free condition in (2.1). At the second step, we advance the first intermediate velocity by
the pressure term

u∗∗−u∗

∆t
=−∇pm+ 1

2 , (2.8)

and apply the divergence to both sides. (2.8) becomes

∇·u∗∗−∇·u∗

∆t
=−∇2pm+ 1

2 . (2.9)

By imposing
∇·u∗∗=0, (2.10)

we achieve the pressure Poisson equation

∇2 pm+ 1
2 =

1

∆t
∇·u∗. (2.11)

Once (2.11) is solved, we can advance from u∗ to u∗∗. Conventionally, this would be the
end of projection method and actually u∗∗ = um+1. It is so indeed for a pure fluid cell
(η = 0). However, for a cell fully or partially occupied by solids (η > 0), we need one
more step to uphold the velocity to be the same as that of solid, say Us, that is known in
advance. This is accomplished by the virtual force applied only to solid part and stated
as follows

um+1−u∗∗

∆t
=ηfm+ 1

2 , (2.12)

with

um+1=ηUm+1
s +(1−η)u∗∗, (2.13)

and virtual force fm+1/2 can be determined reciprocally. Taking a cell fully occupied by
solid (η=1) in the case of flow past a still cylinder as an example, then um+1=Um+1

S =0.
The fm+1/2 calculated by (2.12) will be the virtual force to hold the cell still. Otherwise,
pressure gradient generated by (2.11) will cause a nontrivial velocity there. We may imag-
ine that the particles composing the cylinder would be drifted away without a force hold-
ing it. Likewise, we need to compensate the solid temperature to a desired distribution
by the virtual heat source term, for example in the case of isothermal boundary condition
with θS known in advance, and this gives the following step in advancing θ∗ to θm+1:

θm+1−θ∗

∆t
=ηqm+ 1

2 , (2.14)
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with

θm+1=ηθm+1
S +(1−η)θ∗, (2.15)

and virtual heat source qm+1/2 can be determined reciprocally too. Again taking cold
flow past a still hot cylinder with the surface temperature of cylinder requested to be
θ = 1 all the time, this boundary condition is equivalent to maintaining the temperature
of whole cylinder to be θ=1 all the time. We would then set the initial thermal condition
to be θ=η. Once the heat convection is on, solid cells would be inevitably cooled and can
no more maintain θ = 1 without any compensated heat source. The virtual heat source
ηqm+1/2 plays exactly the role of heat compensation required.

The integration of virtual force will be a good approximation of the resultant force
exerted on the solid object by fluid,

F=−

∫∫∫

CV
ηfdV, (2.16)

which is otherwise needed to be calculated by messy surface integration of shear stress
and pressure in traditional methods. Easiness of obtaining the resultant force exerted on
solid is a chief advantage of the current method, which has not been fully noticed and
explored by previous DFIB methods. Likewise, the volume integral of virtual heat source
ηq gives us the privilege to determine the net heat rate applied to solid easily, which can
further determine Nusselt number by energy balance. In traditional way and case of
isothermal boundary condition, once the temperature field is obtained, the local Nusselt
number on the solid surface is evaluated using

Nus =
∂θ

∂n

∣

∣

∣

∂Ω

, (2.17)

where n is the normal direction of the solid surface [24]. Afterward, surface-average
Nusselt number becomes

W ·Nu=
∫∫

∂Ω

Nusds=
∫∫∫

Ω

ηqDV, (2.18)

where W is the total surface area of the solid object. Obviously without the further equal-
ity to the volume integral of virtual heat source in (2.18), evaluating (2.17) and the surface
integral in (2.18) would be messy in computation.

In summary, the numerical procedure of the current method at each time step is given
below:

1. Determine η through the position and orientation of the solid rigid object.

2. Calculate u∗ and θ∗ via (2.4) and (2.5).

3. Solve the Poisson equation (2.11) and advance to u∗∗ via (2.8).
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4. Update the solid velocity to the prescribed value and compute the virtual force
required.

5. Update the solid temperature to the prescribed value and compute the virtual heat
source required.

One may argue that the step 4 above after the projection method (step 3) to uphold the
physical solid velocity, may destroy the otherwise divergence-free situations throughout
the whole domain. It turns out that the divergence-free situation is indeed destroyed in
cut cells at which the solid-fluid interface is located. This may imply non-physical mass
sources or sinks could be generated in cut cells. Interestingly, these minute sources and
sinks come in pairs in cut cells and end up canceling each other to maintain an overall
mass conservation. This explains why the scheme still performs well in the benchmark-
ing computations. In fact, when viewing fluid-solid interaction under the framework
of immersed interface method, jumps of pressure and velocity derivatives exist when
crossing solid-fluid interface [39]. These weak singularities due to jumps happening at
interface do mathematically accommodate the violation of divergence-free situation over
there if viewing solid and fluid as a whole domain. Implementing virtual force (step
4) after projection (step 3) is also the main difference between our DFIB method and
other earlier DFIB methods such as Fadlun et al. [14], in which virtual-force step is im-
plemented before projection step to make sure divergence-free situation is obeyed every-
where at the end of each time step. However, this wrong ordering, caused by misconcept
about divergence-free situation, would destroy the physical solid velocity upheld in vir-
tual force step. In case of flow past a still cylinder as an example, the cylinder actually
would drift due to though small but non-zero velocity at immersed boundary. However,
Fadlun et al. [14] argued that the drift is very small in their framework.

The current scheme is formally 2nd order accurate in time and space as expressed
in (2.4)-(2.12) and (2.14). However, an accuracy degradation will inevitably happen here
at cut cells, because the no-slip boundary condition is not exactly upheld at solid-fluid
interface. Unlike the DFIB method by Fadlun et al. [14] emphasizing to extrapolate the
fluid velocity into solid to fit the exact no-slip boundary condition on solid-fluid interface
and maintain 2nd order of accuracy in space thoroughly, (2.13) in the sense of weighted
average is instead implemented here to determine the velocities in cut cells. This will
degrade the order of accuracy to be super-linear (order of accuracy between 1 and 2).
However, though the current scheme will not achieve 2nd order of accuracy, it will not
either generate spurious internal flow inside the solid object that happens when conduct-
ing extrapolation mentioned above. Besides, as a silver lining, resultant force of solid can
then be easily obtained by (2.16) here. Volume integral of virtual force using extrapola-
tion will not be equal to the resultant force because of the generation of a non-physical
flow inside the solid. It is a worthy trade-off with accuracy for the convenient compu-
tation of resultant force. Though above is argued for the momentum equations, similar
reasoning can be applied to its energy equation counterpart as well. Besides, implemen-
tation of 2nd order approach above inevitably needs to consider full geometric details of
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each cut cell, and therefore larger overhead in computation would come with that. This
is endurable when solid is still since just doing once, but will be costly in time when solid
is moving.

3 Results and discussions

3.1 Validation – Forced convection over a heated circular cylinder with an
isothermal surface

To validate the established immersed boundary model, we first simulate forced convec-
tion over a heated circular cylinder placed in an unbounded uniform flow. The geometric
set up in the computational domain and the associate physical boundary conditions are
shown in Fig. 1. The Dirichlet boundary condition, i.e. a uniform velocity profile, is ap-
plied at the inlet boundary and Neumann boundary conditions are applied at lateral and
outlet sides. The incoming fluids are cold (θ=0) whereas the cylinder is considered as a
heated body with an isothermal surface (θ=1). Non-uniform rectangular grids (220×180)

Figure 1: Computational domain, boundary conditions and grids.
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allocated by a sinusoidal distribution proposed by Kuyper et al. [25] is adopted to dis-
cretize the computational domain, with a uniform grid (50×50) is employed to cover the
cylinder (Fig. 1). A grid independence study is undertaken using various grids such as
100×90, 150×130, and 220×180. In terms of the predicted wake length, results are very
close. Therefore, the grids (220×180) should be enough to obtain grid independent solu-
tions.

Simulations have been conducted for a variety of Reynolds numbers based on the
cylinder diameter and the free stream velocity. Streamlines, vorticity contours and
isotherm contours for simulation at Re = 40 and Re = 100 are shown in Figs. 2 and 3,
respectively. It is well known that at low Re, the flow pattern remains symmetric with
a pair of stationary re-circulating vortices behind the cylinder (see Fig. 2). Increasing
Re leads to instability of flow structures, so a pair of symmetrical vortices behind cylin-
der breaks down and the vortex starts to shed up and down alternatively (see Fig. 3).
This shedding frequency can be revealed as a dimensionless parameter, namely Strouhal
number. The re-circulation length (xr), drag coefficient (CD), Strouhal number (St) and
Nusselt number (Nu) are compared with some previous works and presented in Table
1. In general, all results obtained by the established model show good agreements with
those previous studies.

Table 1: The comparison of average drag coefficients, recirculation length and Strouhal numbers at Re = 40
and 100.

Re = 40 Re = 100

CD xr Nu CD CL St Nu

Tritton (experiment) [32] 1.48 - - 1.25 - - -

Borthwick [33] 1.507 - - 1.215 - - -

Sheard et al. [34] 1.5 - - 1.38 - - -

Dennis and Chang [35] 1.522 2.35 - 1.056 - - -

Lange et al. [36] 1.5 - 3.28 1.319 - 0.165 5.00

Soares et al. [37] 1.49 2.275 3.20 - - - -

Fornberg [38] 1.498 2.24 - 1.058 - - -

Lai and Peskin [10] - - - 1.4473 ±0.3229 0.165 -

Su [11] 1.63 - - 1.4 - 0.168 -

Ye [13] 1.52 2.27 - - - - -

Tseng and Ferziger [15] 1.53 2.21 - 1.42 ±0.29 0.164 -

Vega [22] 1.53 2.28 3.62 - - - -

Pan [23] 1.51 2.18 3.23 1.32 ±0.32 0.16 5.02

Kim et al. [26] 1.51 - - 1.33 ±0.32 0.165 -

Ecker and Soehngen [27] - - 3.48 - - - -

Dias and Majumdar [28] 1.54 2.69 - 1.395 ±0.283 0.171 -

Present study 1.567 2.219 3.32 1.4 ±0.322 0.167 5.08
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Figure 2: (a) Streamlines, (b) vorticity contours, (c) isotherms, (d) ηf and (e) ηq at Re = 40.

Since virtual force and heat source are the main features of current method, their
distributions are particularly demonstrated in Figs. 2(d) and (e) for the case of Re = 40.
In Fig. 2(d) ηf is plotted when the flow becomes steady, and this distribution is mainly
to compensate for the velocity caused by the pressure gradient from (2.9) so that the
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Figure 3: (a) Streamlines, (b) vorticity contours and (c) isotherms at Re = 100.

resultant velocity is zero inside the cylinder. In Fig. 2(e), the counterpart of Fig. 2(d),
ηq is plotted, and this distribution is to compensate the cooling caused by the incoming
cold flow so that the temperature of whole cylinder can be maintained to be θ = 1, and
therefore isothermal boundary condition can be upheld. One can see virtual force and
heat source both have larger distribution at the up-wind side than the lee side due to
larger pressure and stronger cooling respectively.

3.2 Natural convection in a square enclosure with a heated circular cylinder

The established immersed boundary model is further applied to simulations of natural
convection in a square enclosure with a heated circular cylinder placed at its center. Due
to the temperature difference between the hot cylinder and cold ambient fluid, buoyancy
is induced and causes an upward flow. The system consists of a square enclosure of
length L whereas the diameter of the cylinder is D = 0.2L. The walls of the square en-
closure are kept at a constant low temperature of θC while the cylinder is kept at another
constant high temperature of θH . We define L, θC and θH as the characteristic length,
the reference temperature and the wall temperature, respectively. The computational do-
main as well as the boundary conditions are shown in Fig. 4. 201×201 uniform Cartesian
grids are employed in the computational domain.



M.-J. Chern et al. / Commun. Comput. Phys., 18 (2015), pp. 1072-1094 1085

Figure 4: Computational domain and the coordinate system along with boundary conditions.

The isotherms and streamline contours for simulations at Ra = 104, 105 and 106 are
presented in Fig. 5. For the case at Ra = 104, the heat transfer inside the enclosure is
mainly dominated by heat conduction. At the higher Ra of 105, the thermal plume com-
mences to appear on the top of the cylinder due to the buoyancy. The thermal gradient
at the upper part of the enclosure is much stronger than the lower one. Consequently,
the dominant flow is found in the upper half of the enclosure. It indicates that natural
convection plays an important role in flow and thermal field inside the enclosure. As Ra
increases to 106, the heat transfer in the enclosure is mainly by natural convection. The
thermal plume strongly impinges on the top of the enclosure to form a thinner thermal
boundary layer and enhances the heat transfer.

The surface averaged Nusselt numbers Nu of the cylinder for different Ra are given
in Table 2. Nu of the cylinder increases as Ra increases due to the domination of convec-
tive heat transfer. To study the effect of fractional values of η, we perform simulations

Table 2: Nu around a circular cylinder placed concentrically inside an enclosure, D= 0.2L. The terms A and
B indicate that the calculations are performed by ignoring and including fractional values of η, respectively. η
will be only either 0 or 1 for A and 0<η<1 for B.

Ra =104 Ra =105 Ra =106

Moukalled and Archarya [29] 2.071 3.825 6.107

Shu et al. [30] 2.082 3.786 6.106

101 101 A 2.100 3.767 5.837

101 101 B 2.065 3.550 5.245

151 151 A 2.109 3.839 6.077

151 151 B 2.107 3.835 6.070

201 201 A 2.079 3.813 6.108

201 201 B 2.078 3.812 6.106
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Ra = 104 Ra = 105 Ra = 106

1.000000
0.937501
0.875001
0.812501
0.750001
0.687501
0.625001
0.562501
0.500000
0.437500
0.375000
0.312500
0.250000
0.187500
0.125000
0.062500

θ

Figure 5: Isotherms (upper) and streamlines (lower) of natural convection in a square enclosure with a circular
cylinder, D=0.2L. The cylinder is at the center of the enclosure.

for two different types of grids, i.e. A and B as shown in Table 2. The terms A and B
indicate that the calculations are performed by ignoring and including fractional values
of η, respectively. η is either 0 or 1 only for A and 0≤η≤1 for B. In terms of our results, it
is observed that the difference of calculation Nu between A and B is not significant when
simulations are preformed using more grids. Furthermore, we choose uniform 201×201
grids for all simulations in the following cases. Also, again the present results in Table 2
agree well with literatures [29, 30].

To further validate the proposed method, we also undertake simulations for natural
convection over a heated cylinder placed eccentrically inside a square enclosure. The
cylinder has a diameter D = 0.2L. Its center is located at (x,y)= (−0.15L,−0.15L) from
the center of the enclosure. This case is common and has been studied by other scholars.
The isotherm and streamline contours at different Ra are presented in Fig. 6 whereas the
comparison of the average Nusselt number with previous studies is given in Table 3.
Again, the present results show good agreement with previous studies [22, 23, 31].

Table 3: Nu around a circular cylinder placed eccentrically inside an enclosure, D=0.2L.

Ra =104 Ra =105 Ra =106

Vega et al. [22] 4.750 7.519 12.531

Pan [23] 4.686 7.454 12.540

Sadat and Couturier [31] 4.699 7.430 12.421

Present study 4.712 7.481 12.523
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Ra = 104
Ra = 105 Ra = 106

1.0000
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

θ

Figure 6: Isotherms (upper) and streamlines (lower) of natural convection in a square enclosure with a circular
cylinder, D=0.2L. The cylinder is not at the center of the enclosure.

3.3 Natural convection in a square enclosure with a moving heated circular
cylinder

To further demonstrate the capability of the present DFIB in handling fluid-solid inter-
actions with a moving hot object, we perform the simulations of natural convection in
a square enclosure with a moving heated circular cylinder. The cylinder has a diameter
D=0.2L, where L is the length of the square enclosure. The cylinder sways sinusoidally
in the horizontal direction with the amplitude of A=0.5D as shown in Fig. 7 and the non-
dimensional swaying frequency ̟ is equal to 1. The instantaneous displacement d of the
cylinder from its mean position is given by d= Asin(̟t). The cylinder is at the center of
the square enclosure initially. The simulation is performed till it reaches a periodic phe-
nomenon. The instantaneous streamline, isotherm and vorticity contours during a cycle
are shown in Fig. 8. It should be noted that thermal physical properties of fluid in this
case are as same as the case of natural convection at Ra =106. It is found that the thermal
plume, which also occurs in a stationary cylinder case, is again shown in Fig. 8 sweeping
above the cylinder due to the sway of the cylinder. The thermal plume plays a vital role
in the heat dispersion as already shown in Table 3. It is interesting to know the effect of
the cylinder motion on the behavior of the thermal plume and the heat dispersion from
the cylinder. In the case of horizontally moving cylinder (Fig. 8), two main eddies due to
the thermal plume occupy the entire enclosure. The sizes of those two counter rotating
eddies change periodically due to their interaction with the cylinder.
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Figure 7: Computational domain and the coordinate system along with boundary conditions for mixed-convection
in a square enclosure with a moving heated circular cylinder.

t = 0.25T t = 0.5T t = 0.75T t = T

0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

Figure 8: Snapshots of isotherms (upper) streamline (middle) vorticity (lower) contours during a cycle of
horizontal swaying, ̟=1, A=0.5D.
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t = 0.25T t = 0.5T t = 0.75T t = T

0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

Figure 9: Snapshots of isotherms (upper) streamline (middle) vorticity (lower) contours during a cycle of vertical
bouncing, ̟=1, A=0.5D.

In addition to the sway of the cylinder, the vertical motion of the cylinder, which is in
the direction of the gravity is also worthy of investigation. Hence, the simulation which
considers a cylinder bouncing up and down is undertaken at Ra =106. Snapshots of the
instantaneous isotherm, streamline and vorticity contours during a cycle are presented in
Fig. 9. It turns out that isotherms, streamlines and vorticity patterns are always symmet-
ric with respect to the gravitational direction. Sizes of those two main eddies vary due to
the bouncing motion, but they are not distorted like the sway case.

In addition to swaying and bouncing cylinders, we extend our simulation by combin-
ing those motions, i.e. the cylinder moving in a counter-clockwise circular orbit which
is concentric with the enclosure and has the radius R. Such a movement stirs the flow
inside the enclosure in a more complicated way and may further cause more complicated
patterns in the natural convection. The description of this problem is given in Fig. 10. The
isotherm, streamline and vorticity contours during a cycle are given in Fig. 11 with ̟=1.
It is found that the thermal plume is distorted due to the orbital motion. Those two main
eddies still exist and are disturbed by the moving cylinder. They are distorted and their
sizes vary due to the horizontal and the vertical movements in the orbital motion.
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Figure 10: Computational domain and the coordinate system along with boundary conditions for mixed-
convection in a square enclosure with a heated circular cylinder moving in a counter-clockwise orbit.

t = 0.25T t = 0.5T t = 0.75T t = T

0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625

Figure 11: Snapshots of isotherms (upper) streamline (middle) vorticity (lower) contours during a period of
movement in a counter-clockwise orbit, R=0.5D, ̟=1.
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Figure 12: Time histories of Nu for the three cases shown in Figs. 8, 9 and 11.

Together with the previous cases, we show the time histories of Nu for those three
cases (Figs. 8, 9 and 11) at Ra = 106 and present them in Fig. 12. For the considered
amplitude (A) and oscillating frequency of cylinder motion (̟), it can be observed that
Nu for moving objects are lower than the case of the stationary one in Table 3 (due to
larger plum development space in Table 3) and also lower than that in Table 2 for most
of time. When the hot cylinder starts to move in any direction, it sheds convective cells
which are induced by the thermal plume above the heated cylinder. These cells spread
heat to the adjacent fluid. After one period, while the convective cells keep growing,
the cylinder moves toward its starting position and penetrates the growing hot region,
the heat transfer form the hot cylinder to the fluid is consequently reduced. To further
observe these phenomena, we perform the simulations at different amplitudes (A) and
oscillating frequencies (̟) of the cylinder motion. We calculated and tabulate the time
average of Nu in Table 4. When the amplitude is very small, e.g. A=0.005D, the cylinder

Table 4: Time average of Nu of a moving circular cylinder at different amplitude and oscillating frequency,
D=0.2L.

Motion ̟ A=0.005D A=0.05D A=0.5D

Horizontal 0.1 6.117 6.111 6.062

Horizontal 1.0 6.114 6.083 5.628

Vertical 0.1 6.130 6.125 6.110

Vertical 1.0 6.127 6.103 5.912

Orbital 0.1 6.122 6.120 6.079

Orbital 1.0 6.118 6.085 5.639
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acts as a slightly vibrating object. For all the cases in Table 4, we observe that the highest
time-averaged Nu is found at the smallest amplitude, A= 0.005D. On the other hand,
smaller oscillating frequencies offer higher time-averaged Nu due to the slower motion
of the cylinder, which spends more time for convective cells spreading heat before the
cylinder moves back. It should be noted that all cases were computed and compared to
stationary natural convection at Ra = 106 (as shown in Table 2) with fluid and thermal
properties being the same. The flow is more dominated by natural convection than by
the forced cylinder motion. Hence, the motion of cylinder does not offer any significant
effect to increase heat transfer between the hot cylinder and the fluid.

4 Conclusions

A modified DFIB method is established in this study to explore interactions of fluids and
structures both in mechanics and heat transfer. The fraction of solid at each computa-
tional cell is determined. Subsequently, it is involved in the computation of the virtual
force and heat source. The virtual force and heat source are added into the momentum
and energy equation to realize the effects of solids on the flow and heat transfer via the
role of an immersed body, respectively. The current method is validated by a uniform
flow past a heated circular cylinder. Good agreements are found in flow characteristics
and heat transfer features between the present model and previous studies. Furthermore,
the natural convection in a square enclosure with a heated cylinder inside is simulated
by the proposed model. The surface-average Nusselt number for the hot cylinder is cal-
culated and agrees well with previous studies. The established DFIB model is also able
to consider a moving solid object. The cylinder inside the square enclosure is forced to
move to test the capability of the current method. The circular cylinder sways, bounces
and moves in a circular orbit in the square enclosure. Influences of the motion of the
cylinder on the natural convection inside the enclosure are observed from the calculated
data. Consequently, the proposed DFIB method here is able to simulate both mechanics
and heat transfer in fluid-solid interaction problems.
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