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In this paper, we developed a one-dimensional model for electric potential generation of electrocytes in
electric eels. The model is based on the Poisson-Nernst-Planck system for ion transport coupled with
membrane fluxes including the Hodgkin-Huxley type. Using asymptotic analysis, we derived a simpli-
fied zero-dimensional model, which we denote as the membrane model in this paper, as a leading order
approximation. Our analysis provides justification for the assumption in membrane models that electric
potential is constant in the intracellular space. This is essential to explain the superposition of two mem-
brane potentials that leads to a significant transcellular potential. Numerical simulations are also carried
out to support our analytical findings.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Electric eels (electrophorus electricus) have interested scientists
for centuries. Electric discharge was discovered by scientists in
late 1700s, and was generated by an identifiable electric organ
(Markham, 2013). The high-voltage electric discharge is used to
stun prey or defend themselves from predators (Nelson et al.,
2016), while high-frequency or low-intensity discharges are used
for active sensing and communication (Catania, 2015a; Lissmann,
1958). The electric organ has several thousands of electrogenic
cells, called electrocytes, stacked in series. Each electrocyte pro-
duces a potential difference of 0.15V, but stacked electrocytes can
generate a huge voltage similar to stacked plates in a battery
(Gotter et al., 1998; Mauro, 1969).

Electrocytes work much like muscle or nerve cells. The mech-
anism of voltage generation is associated with the membrane po-
tentials and ionic fluxes (currents) across the membranes of elec-
trocyte. There is an ion concentration gradient across membrane,
which maintains an equilibrium membrane potential at resting
state (approximately —85 mV for electrocyte). Electrocyte pos-
sesses two primary membranes: the innervated membrane and
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the non-innervated membrane (Gotter et al., 1998; Xu and Lavan,
2008), where various types of transmembrane proteins (such as
ion channels and pumps) abound and work in synergy to generate
unusual phenomenon or fulfil a function. Like in nerve cells, ac-
tion potential (AP) can be triggered at the innervated membrane,
which in turn causes a difference in electric potential (0.15V). Such
mechanism has been utilized to design synthetic cells, aiming to
convert ion concentration gradient to APs, which has potential ap-
plications for powering medical implants (Humayun et al., 2003;
Xu and Lavan, 2008).

Since the 1950s, many experiments have been conducted to
investigate the electrogenic mechanisms and the functions of elec-
tric discharge with different intensity or frequency. It was reported
that (Brown, 1950; Coates, 1950) high-voltage discharge produced
by eels can be as high as 600V and the external current can be
up to 1 A. Recently, Catania (2015b) showed that the high-voltage
discharge with high frequency can be used to track fast-moving
prey and guide the strike, similar to the “terminal feeding buzz”
of bats. He also investigated the electromotive force and internal
resistance for discharge during the defensive leaping behavior
(Catania, 2017a; 2017b), by an equivalent circuit. In addition, there
have been many investigations on voltage-gated channels, AP,
and waveforms of discharge of electrocytes (Dunlap et al., 1997;
Gotter et al., 1998; Noda et al, 1984). For more experimental
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studies, see also Keynes and Martins-Ferreira
Markham (2013); Sheridan and Lester (1977).

Many mathematical models can describe various ion transport
through ion channels, including the famous Hodgkin-Huxley (HH)
model (Hodgkin and Huxley, 1990) and Goldman-Hodgkin-Katz
(GHK) model (Hille et al., 2001). The HH model has been used to
show AP in squid giant axon (Hodgkin and Huxley, 1952; George
et al., 2015), but could not be directly applied to the electrocyte
due to cell polarity. In the HH model for squid axon, all types of
ion channels are assumed to be distributed uniformly on the cir-
cumferential membrane. The membrane potential to be computed
in HH model is the difference between intracellular and extracel-
lular electric potential. Basically, intracellular and extracellular po-
tentials are assumed to be constants in space, and the HH model is
an ODE or membrane model unable to accommodate the boundary
layer (BL, electric double layer) of the membrane.

In Xu and Lavan’s membrane model (Xu and Lavan, 2008), var-
ious types of ion channels and pumps (Altamirano, 1955; Gotter
et al., 1998; Keynes and Martins-Ferreira, 1953) are assumed to
be distributed on innervated and non-innervated membranes re-
spectively. The electric potentials in and outside the electrocyte
are assumed to be constants as in the HH model for squid axon.
However, there is a crucial difference between the two cases since
the two extracellular domains next to the innervated and non-
innervated membranes are separated, while the extracellular do-
main in the HH model for squid axon is connected. This was not
addressed in Xu and Lavan (2008) and the innervated and non-
innervated membrane potentials were computed using two inde-
pendent ODEs. It was shown that the innervated membrane is de-
polarized from —85mV to 65mV before re-polarizing and return
to the resting state. For the non-innervated membrane, it was im-
plied that the potential remains at its resting state regardless the
changes at the innervated membrane. These two membrane po-
tentials are superposed to obtain the transcellular potential up to
150 mV. The total potential of the electric organ can be obtained
by summing the transcellular potentials of electrocytes since they
are placed in series. This superposition principle is valid provided
that the electric potential does not vary in the intracellular do-
main, except in the BLs next to the innervated and non-innervated
membranes. These issues provide the main motivation for explor-
ing the dynamics of a model electrocyte through a PDE approach
since they can not be addressed by the membrane model in Xu and
Lavan (2008), which does not allow for spatial variations of elec-
tric potential inside each of the three domains (one intracellular
and two extracellular domains).

In this paper, we investigate the mechanism of electric poten-
tial generation of electrocytes in the case of an open circuit. We
start with a more fundamental model for ion transport in bio-
logical systems. The model consists of electro-diffusion (Nernst-
Planck) equation for major ion species such as sodium, potassium
and chloride, and a Poisson equation for the electricity field. This
Poisson-Nernst-Planck (PNP) system has been successfully applied
to model ion transport in cells and ion channels (Liu, 2009; Ru-
binstein, 1990; Mori et al., 2011; Kenny et al., 2018; Gardner and
Jones, 2011), as well as AP propagation in axons when coupled
with the HH membrane fluxes (Pods et al., 2013; Song et al., 2018a;
2018b). Using asymptotic analysis, we have derived a membrane
model from our PNP model, which is consistent with the one in
Xu and Lavan (2008). Our analysis provides the justification of the
assumptions made in Xu and Lavan (2008). In the leading approxi-
mation, the electric potential in the bulk of intra/extra-cellular re-
gions holds uniform, and the membrane can be treated as a capac-
itor with effective charges stored in BLs.

The rest of the paper is structured as follows. The complete for-
mulation with PNP system and general ionic flux models through
membranes is given in Section 2. The non-dimensionalization is

(1953);

conducted in Section 3. Section 4 studies important features of the
PNP system by asymptotic analysis, and the membrane model is
derived. In Section 5, specific flux models are adopted and detailed
numerical simulations are carried out to illustrate the mechanism
of potential generation and to verify other features in analysis. Fi-
nally, we summarize our findings and comment on a follow up
project with a closed circuit.

2. Problem formulation

Fig. 1 (a) illustrates the two-dimensional (2D) view of stacked
electrocytes. The transmembrane proteins in the electrocytes
are asymmetrically distributed across two primary membranes
(Keynes and Martins-Ferreira, 1953; Gotter et al., 1998), one inner-
vated and the other non-innervated. As the high voltage generated
by electric eel’s electric organ is a superposition of the difference
in electric potential generated by electrocyte in series, we concen-
trate on a unit structure of electrocyte, illustrated in Fig. 1(b). For
simplicity, we treat the electrocyte as a one-dimensional structure,
with one intracellular (IC) region in the middle and two extracel-
lular (EC) regions on two sides. Let a and b denote respectively the
positions of innervated and non-innervated membranes.

Poisson-Nernst-Planck (PNP) system is often used to describe
the transport of ions in cells. It is derived by treating ions as point
charges and provides a very good approximation for dilute ionic
solutions (Kilic et al., 2007a; 2007b; Song et al., 2019) as in the
extracellular and intracellular regions here (the relative error is
of order 103 by estimate from steric PNP models). lonic currents
(or fluxes) through membrane are given by various experimental
or empirical models, depending on the types of ion channels
involved. The general forms of the currents are presented here,
and the specific examples are given in Section 5.1 to show the
numerical results.

In this paper, we focus on three ion species Na*, K* and CI~
as in Fig. 1, since they are the three major ions (sometimes called
bio-ions) most relevant for generating electric pulses in electrcytes.
Let ¢; (i= 1,2, 3) denote concentrations of Na*, K™ and Cl~, with
valences z; =z, = 1, z3 = —1. The one-dimensional PNP system is

+ K* K*
K+, q K K+, q K* q
_ + Cl . + ClHL L * ClI
Na+, cr(Na*, Cl Na*, Cl Na*, Cl Na*, Cl Na*, Cl
ICspace ~/ECspace ||Cspace EC space |ICspace EC space
0 /a, ‘b\ L
Innervated Non-
membrane innervated
membrane
(a)
VG channels channels (K,Cl)
Kir channel Pumps (Na/K)
+ - K*, q p
K+, Nat, Cl Receptor Nav, I k-, Na*, CI
EC space IC space EC space
L ]
x=0 X=a x=L

(b)

Fig. 1. (a) Two-dimensional view of stacked electrocytes, where EC and IC stand
for extracellular and intracellular respectively, (b) the one-dimensional setup of unit
structure of electrocyte, where VG stands for voltage-gated.
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given by Rubinstein (1990); Song et al. (2018b)

3
—€o€rday =eoNa| Y zici+q), xe(0,@)uU(a,b)u (b, L),
i-1

(1)

duci = — s J,-=—Df(axc,- Z'e°c,ax1/f), i=1.23. (2

kgT

where the first (Poisson) and the second (Nernst-Planck) equations
govern the electrostatic potential 1/(x, t) and ionic concentration
ci(x, t), respectively. There is negative fixed charge g in the intra-
cellular region, while g = 0 in the extracellular regions. The ionic
fluxes J; (i =1, 2, 3) consist of two parts, due to the ionic concen-
tration gradient and the electric field, and D; (i =1, 2,3) are the
diffusion constants. Other parameters (given in Appendix B) are
vacuum permittivity €g, relative permittivity €,, elementary charge
eg, Avogadro constant N, Boltzmann constant kg, and absolute
temperature T.

The left membrane x = a corresponds to the innervated mem-
brane of electrocyte. On this membrane, there are voltage-gated
channels (Bezanilla, 2007; Malmivuo and Plonsey, 1995; Hodgkin
and Huxley, 1990), inward rectifier K* channels (Kir) (Nygren et al.,
1998), and acetylcholine receptors (AChRs) (Adams, 1981). The
membrane currents are assigned as positive if they are from intra-
cellular region to extracellular region. The current through voltage-
gated channels is given by
IVG IVG(vnll1 a 8)

) ,+s 1,

where V§ = ¢ — 4 is the membrane potential at membrane x =
a, and 6 represents the gating variable(s), whose dynamics de-
pends on Vy,. Hereafter, superscripts a and b mean the innervated
and non-innervated membranes at x =a and x = b, and + denote
the right and left limits of quantities on the membrane. Although
the concentrations of other ions are not explicitly shown in the
formula (3) of ion species i, their effects are reflected in the mem-
brane potential V& which is determined by all ions.

Additional current from rectifier K+ channel (Kir channel) takes
the form Nygren et al. (1998); Xu and Lavan (2008)

IKn' IKlr(an“ CZ " CZ ) (4)

i=1,2,3, (3)

This channel is specific for K and the conductance is considered
to be a constant, which is different from the voltage gated channels
discussed earlier.

The stimulus current is generated by special receptors, which
are open when two agonists, such as acetylcholine ACh, bind with
them Mitra et al. (2005); Xu and Lavan (2008). The chemical bind-
ing process is described by an allosteric kinetic model (Chakrapani
et al., 2004; Adams, 1981)

2A+RES AL AR &2 AR, (5)
k_q 2k 2

where R and A denote the receptor and the agonist, k., k_1, k>
and k_, are the association and dissociation rate constants of the
binding processes. The rate constants k1, k., are assumed to be
constant independent of concentrations, and are often determined
experimentally. In general, the ACh receptor is not selective and
allows currents of many cations (Adams, 1981). This is the main
mechanism to induce extra current initially to disturb the equi-
librium state, which is necessary to trigger AP later controlled by
voltage-gated channels. The extra current through these receptors
will gradually decay to 0. The general forms for the currents of Na*
and K* through the receptor are written as

R = IRV, [A] ke kg t), i=1,2, (6)

where [A] is the concentration of the agonist. As it is the total
current If + I8 that is determined experimentally, we will com-
pare several combinations with the same total current in numerical
simulations in Section 5. The effects of concentrations are reflected
in the membrane potential V3.

At x = b is the non-innervated membrane of electrocyte, where
there are both channels (K* and CI=) and pumps (Na*/K*). The
general forms for the currents through the channels are denoted
by

oo Popehd
where V2 = ¢2 — b is the membrane potential at membrane x =
b. Since there are no Nat channels on this membrane, Na*t cur-
rent is set to be 0. These channels have constant conductance (not
voltage-gated), and will react to the changes in electrical potentials
induced by the other innervated membrane. The currents through
the pumps are Goldshlegger et al. (1987); Novotny and Jakobs-
son (1996)

pump __ jpump «y;b b b
I; = (N o e

ch). i=2.3, (7)

S i=1.2 [E™=0. (8)

The pumps are responsible to recover and maintain equilibrium
concentrations.

These currents provide the flux conditions at the two mem-
branes for the PNP system

—z1e0NaJ1 = V¢ + I}, at x=a,
—2260Npf, = ¢ + IX + KT, at x=a, (9)
—z3e0Naf3 = I¥C, at x=a,

ziegNyJ; = IP + PP, i=1,2,3, at x=bh.

Two conditions for ¢ are also needed on each membrane. Assume

that the membranes have thickness h; and relative permittivity

€M and with a constant electric field. Thus, the electric potential

is linear inside both membranes, which implies

[ Yy —yP
hm

€Y [y_gr = € v €OV gy = G?T (10)

where a+ and b+ denote the left and right limits at x = a and b.
We use typical bulk concentrations (Gotter et al., 1998) under
electro-neutrality as the initial values at t =0

c1(x,0) =160mM, c;(x,0) =2.5mM,
for O<x<aandb<x<L

c1(x,0) =8.928mM, c;(x,0) =72.048 mM,
for a<x<bh.

c3(x,0) = 162.5mM,

c3(x,0) =9.328 mM,

(11)

For the boundary conditions at x = 0 and L, we have

Y(0,6)=0, ¢(0,t)=160mM, c,(0,t) =2.5mM,
c3(0,t) =162.5mM, (12)
W(Lt)y=0, c(Lt)=160mM, c(L t)=2.5mM,

c3(L,t) =162.5mM.

Note that 1/ needs to be fixed at one position to ensure a unique
solution, and it is set to be zero on the left boundary (x = 0) with-
out loss of generality. It will be equivalent by fixing a value on the
right boundary or at a middle point.

3. Non-dimensionalisation

In this section, we present dimensionless system for the pre-
ceding formulation, which will be used in analysis and simulation.
We adopt the following scalings

I C= G i=4 D. — Di

1// BT/eo Cl 0’ Q— Dl — Dy’ t— LZ/DO (13)
g G—49 pH=2» r— i
a=r, b= I Ji= Doco/L

x
1%
3
Il
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where cg is the extracellular bulk concentration of Na*t, Dy is typ-
ical diffusion constant, L is the total length of unit structure, and
the diffusion time scale is adopted. The currents I; on the right-
hand side of (9) and the associated conductances and permeabili-
ties therein are scaled respectively by

coDpegNy . CoDoegNA P — @
L %7 TkeTL T L

The values of the above quantities in scaling are given in
Appendix B.

In the following, we remove the tilde for simplicity, and use the
same notations for the dimensionless quantities. For intracellular
and extracellular regions, the dimensionless PNP system is given
by

I = (14)

3
—623XXW= >z +q,. xe(0,a)u(a,b)u(b,1),
k=1 (15)

0rCi = —0xJi = Di0x(0xCi + ZiCi0xYr), 1=1,2,3,

where we have q = —-0.4478 for a<x<b and q =0 for the other
regions. The parameter € is defined by

A kgT
e=2D = ST (16)
L eoNACO
where Ap is the Debye length.
At the membranes, we have the flux conditions
—z1)1 =N+ I, ' at x=a,
—2)p = 5C + +I8 + IKI", at x=a, (a7)
—z3)3 = I§C, at x=a,
zfi=P+1MP, i=1,2,3, at x=b
The interface conditions at membranes for ¥ become
€2 e W+ vl €2 €2 ¢+ wb
axw|x at hm BXWL( b = Em hm (18)

where

| €0€MkpT
€Em=.|—5——=. 19
m E%NACOLZ ( )

All the dimensionless parameters are given in Appendix C.
The dimensionless initial values at t = 0 are given by

c1(x,0) =1, c¢(x,0)=0.0156, c5(x,0) = 1.0156,
for O<x<aandb<x<1, (20)
c1(x,0) =0.0558, cp(x,0) =0.4503, c3(x,0) =0.0583,
for a<x<bh.
For the boundary conditions at x =0 and 1, we have
Y(0.t) =0, ¢(0,t) =1, ¢(0,t)=0.0156,
c3(0,t) =1.0156, 21)
P1.0=0, c(1.H)=1, c(1,t) =0.0156,

c3(1,t) =1.0156.
4. Asymptotic analysis

There have been attempts to study the high-voltage discharge
using membrane models (Xu and Lavan, 2008) with some assump-
tions (i.e., electric potential and concentrations are uniform in bulk
EC and IC regions). In the previous section, we have formulated the
problem with a more fundamental PNP model, with no extra as-
sumptions. This section aims to use asymptotic analysis to derive
a leading order membrane model and examine the validity of the
assumptions. Firstly, note that there exist BLs next to both mem-
branes due to the fact that € is small. In addition, there is a separa-
tion in scales between the membrane dynamics and the transport
of ions in the EC and IC regions outside the BLs. As a consequence,
the spatial distribution of electric potential ¥ and concentrations

¢; (i=1,2,3) can be approximated by piecewise constants in the
bulk of the EC and IC regions and membrane potential V2 remains
as a constant.

4.1. Constant  in the bulk regions

In this subsection, we conduct asymptotic analysis to show that
Y is almost constant in each bulk of the three regions. From exper-
iments and simulations as well as the estimate by the parameter
values, the relevant time scale for AP generation in electrocytes is
milliseconds, which is mainly controlled by the time scale of the
receptor (e.g., the parameter ¢ in (55)) and dynamics of gating
variable 6 (e.g., n, m, h in Appendix A). It is much smaller than the
diffusion time scale (estimated at the order of 10 s). Therefore, the
ratio of the two time scales is roughly the same order of € ~ 1075,
and we adopt a new time scale in the following analysis

.t > Lip
Then, the dimensionless equation for ¢; in (15) will become
afc,-: —68;(],‘=€Diax(axci+ZiCiBXW), i=1,2,3, (23)

then £ ~ 0(1) is of interest.

It is well known that there are BLs of thickness O(¢) near the
membrane (cf. Fig. 1(b)), under normal physiological conditions.
There have been a number of BL analyses for the PNP system, and
interested readers can find more details in Song et al. (2018b). In
this paper, we focus on the solution in the bulk regions away from
the BLs. Hereafter, we use “bulk” to mean the bulk/inner region of
associated interval away from the BL near membrane. In bulk, all
the concerned quantities are at most O(1) and taking the deriva-
tive 3f or dx will not increase the order since there is no internal
layer in bulk. In other words, we get

v, ok, ...,=0(1), ,=0Q1), Ji,0di,...
i=1,2,3.
By (23), (24), the variation of ¢; in bulk is at most O(¢), and we

conclude that ¢; is constant at leading order in the bulk. Taking the
derivative dy on (23) gives

8f(aXC,') = —Eaxx]i =O(E), i=1,23. (25)
With initial condition dyc; =0 at £=0, we have dyc;(x,f) =

O(e),i=1,2,3, in bulk. As a result, to leading order the flux in
the bulk is dominated by the drift term from electric field

.]i = 7DiZiCiax1// +O(€)v i= 1,2,3. (26)

By (15);, we obtain the electro-neutral (EN) condition ZL ZiCi +
q = 0(e2) in bulk. Then, multiplying z; in (23) and summing up
lead to

—€dy (ZzJ,) =0: (Zz C,) =9 (Zz,c, +q> =0(e?). (27)
i=1

This means that the variation of total ionic current in bulk is small

3
— 0 (sz) = 0(e). (28)
i=1

Note that this does not mean that each individual flux across the
membrane is small, and numerical results show that it can be
significant. However, the total current is small and the excessive
charge mainly stays in BL as a capacitor.

We start with the bulk region of (b, 1). Combining (26) and
(28), and using the fact that dyxc; = O(¢), at the leading order we
have

3
(ZzizDici) 0¥ =0 = 9,3 = constant. (29)

i=1

cl-,Bxci,... ,:O(]), (24)



X. Cao, Z. Song and T.-L. Horng et al./Journal of Theoretical Biology 487 (2020) 110107 5

Using the boundary condition dxi = 0 at x = b, we obtain dx{y =0
and hence v is a constant throughout the bulk of (b, 1].

Next we examine the bulk region of (a, b). By (26) and the fact
dx¥ = 0 in the bulk of (b, 1), at leading order we have

3
> zJk =0, (30)
i=1

where ]3e is the right limit of bulk flux at x = b. Hereafter, sub-
scripts L and R denote the left and right limits of bulk quantities
at membranes. Using the results in Song et al. (2018b), at leading
order we have

€JP = —zi(eJ + €0:Fg) = —zi(€Jl) — €3:Fy).

where jibL is the left limit at x = b from bulk flux in the region (a,
b), and the expressions of F;z and F;; are given in Appendix C. After
multiplying z; to (31) and summing up, we have

3 3 3 3
€y zly =622J52+8f<e ZZiFiR> +Bf(6 Zz,ﬁl) (32)
i1 i1 i=1 i1

For the present case, it is easy to
Song et al. (2018b) that at leading order

3 3
0; (e Zz,-F,»R) =CndVE = —0; <e Zz,-F,-L), (33)
i=1 i=1

where Gp = €2 /hm is the membrane capacitance. Physically, the
two terms in brackets denote the excessive charge at leading or-
der (see also ) z;Qy= ; in (41)). Therefore, combining (30), (32) and
(33) and taking out the factor € lead to

i=1,2,3, (31)

prove as in

3

> zfh =0, (34)

i=1
which means the total current to the bulk of (a, b) is 0 at leading
order. Egs. (28) and (34) imply

3

Y zJ;=0, in the bulk of (a,b), (35)
i=1

and hence by (26)

M«

3
zi)i = —(ZD@?Q) k=0, = Y =0, (36)
1

i=1

holds in the bulk of (a, b). Thus, ¥ is a constant in the bulk of (a,
)

=3

Finally for the interval (0, a), we can apply a similar argument
at the membrane x = a and conclude that the current in the bulk
of (0, a) is 0 at leading order and hence that dx{r = 0. Therefore,
we obtain ¢ =0 at leading order by using boundary condition
¥(0,t) =0 in (21).

4.2. Derivation of the membrane model

In this subsection, we derive a leading-order membrane model
from the PNP model, which is consistent with that in Xu and La-
van (2008). We also show that the membrane potential V! at the
non-innervated membrane does not vary during the depolarization
and repolarization phases of V.

We take the membrane x = b for illustration. Using (30), (31),
and (33), we have

3 3 3
CndVh = €0; <Zz,~FiR) =—€) zfl=—€) U +IP""), (37)
io1

i=1 i=1

where we have also used interface condition (17)4 in the last
equality. The factor € is present here because we have adopted
a fast time scale. In fact, there are different ways to de-
rive Eq. (37), and they are asymptotically equivalent to that in
Song et al. (2018b). To provide more physical insight, we start from
the original system in Section 3. Integrating (15); from b to 1, we
get

3
€0, (b) = €@ (b) ~ 3,9 (1) = | 'Sz (38)
i=1

i=

where the argument t is omitted in the derivation for simplicity.
By using membrane condition (18), Eq. (38) becomes

1 3
—Cmvn’;:/ > zigidx. (39)
b i

Taking the time derivative in diffusion time scale and using equa-
tion (15),, we get (i.e., (37) without €)

1 3 1 3
—/b l;ziafc,-dx=/b l;ziaxl,-dx

Cn V2

3 3
> zi(i(1) = Ji(b)) = = Y (1P + 1), (40)
i=1 i=1
In the last equality we have used membrane condition (17)4 and
the fact that the current at x = 1 is asymptotically O.

Remark. By (39), the membrane can be interpreted as a capac-
itor. We define the excessive charge for each ionic species at two
sides of the non-innervated membrane as

b
Q-i= | c(x)—¢(0.5)dx, Qy ;= /l Gi(x) —¢i(1)dx,
0.5 b
i=1,23. (41)

Using electro-neutral condition Z?:] zici(1) =0, we can rewrite
(39) as

1 3 3
~CnVip, = f Yoz —a(1)dx =" zQy . (42)
b o i=1

Similarly, if we apply the condition (36) in the bulk of intracellular
region, e.g., x = 0.5, we obtain

b 3 3
Vi = [ >atci-05)dx =Y 20 1 (43)
05 =1 i=1

Egs. (42) and (43) indicate that the membrane at x =b can be
modelled as a capacitor, whose effective charge on each side is the
excessive charge mainly stored in BL near membrane.

Following a similar procedure or using the analysis in
Section 4.1, we obtain the dynamic equation for V2

3
CndVis =zt = —(C+ F+ 5C+ 1§ + 15" + 1§€). (44)
i=1

These two Eqgs. (40) and (44) for the two membrane potentials
have similar forms as the membrane model (Xu and Lavan, 2008),
except that V& and V! and the variables appearing in the for-
mulas of currents are interpreted as bulk quantities in the mem-
brane model. We take (40) as an example to illustrate that it
is a leading order approximation. It is clear from estimates in
Song et al. (2018b) and numerical simulation in the next section
that the variation of ¥ in BL is small compared with V2, and we
have
€n

YP - Y YR — P ~ 0(edu (b)) ~ 0(> ~1072, (45)

€hnp



6 X. Cao, Z. Song and T.-L. Horng et al./Journal of Theoretical Biology 487 (2020) 110107

-0.02
-0.04

-0.06

Fig. 2. The function f(V%) with specific formulas of currents in Section 5.1.

where the first ~ is based on the asymptotic analysis (Song et al.,
2018b) and the second ~ is from interface condition (18),. Thus,
we can replace VJ by the bulk values

Vi =y =yl ~ Vo =y — Y. (46)
Estimates of (45) and (46) are also given in Appendix D in a

slightly different way. Similarly, we replace cf?_ " 6?7 by bulk con-

centrations cf’R, C?L as leading-order approximations in the formu-

las of currents, based on continuity of electro-chemical potential
across the BL and similar estimates as in (45) (Song et al., 2018b).
Therefore, (40) can be rewritten as

d ~ . -
gi/m=Fm) =-B-B-R"" ", (47)
where we have defined from (7), (8) that

b — 7 | —
P=1P@h e, cbp), =23,

fpump _ qpump yyb b b b b —
I =1, (Vm,CLL,CLR,CZ’L,CZYR), k=1,2.

Cin

(48)

Note that we have replaced d; by % to reflect the fact that spatial
variation is removed at the leading order. Similarly,

d
dt
where the above [; (i = 1,2, 3) are defined by replacing V¢ and o
on the right-hand side of (3), (4), (6) by the bulk quantities V4, ch
and cf;. Eqgs. (47) and (49) constitute the membrane model (ODE
model) for computing the two membrane potentials. Eq. (49) with
the specific formulas of currents in Section 5.1 is exactly the same
as in Xu and Lavan (2008), which generates APs. Eq. (47) is not
explicitly given in Xu and Lavan (2008).

Next we briefly show that V2 (or approximately V?) does not
vary during the dynamic process, which is believed to be true in
other works (Gotter et al., 1998; Xu and Lavan, 2008). Let V* be
the local equilibrium of V5 at resting state, then V5 = V* is a stable
equilibrium in general. Locally (47) can be written as

d ~ - N
Ev,g = —C(V2 — V™),

Cn Vi =—(FC+ [+ B¢ + B+ B+ °), (49)

Cn G, >0, (50)
where G, ~ 4.5 x 10-8. With specific formulas in Section 5.1, Fig. 2
shows f(V2) in (47) in a proper range for membrane potential V5.
It can be seen that there is a stable equilibrium near —3.2 (or
—83 mV before scale), and we have C,~0.01. From Section 4.1, we
showed that i is a constant respectively in the bulk of (a, b) or (b,
1). The constant ¥§ = 1//Lb in (a, b) is controlled by the dynamics of
innervated membrane, and hence this causes some perturbation in
Vb =P — k. Since V* is a stable equilibrium, Vi always recov-
ers to V* after perturbation. This is done by adjusting the constant

1//,’3 =1 (1) in the bulk of (b, 1), since there is no restriction for
w(1).

In summary, we have shown that i is a constant in each bulk
of the three regions, and the three constants are determined by
the two membrane potentials. Using the boundary condition at x =
0, ¥ remains as 0 in the region x <a. During an AP at x =a, V2
increases and i will increase in the region a < x < b. Since the non-
innervated membrane is at equilibrium all the time, i.e., V? is fixed,
Y in the region x > b has to increase accordingly. This explains why
there is a high transcellular potential.

5. Numerical analysis

In this section, we adopt specific formulas for the membrane
currents in the model, and then show the numerical results by
solving the dimensionless PNP system in Section 3.

5.1. Formulas of currents

In this subsection, we present the formulas of currents in (3),
(4), (6)-(8). The original parameter values in the following formu-
las are given in Appendix B, while the dimensionless formulas and
parameter values are given in Appendix C.

The currents through voltage-gated channels in (3) are given by
the classical HH model (Malmivuo and Plonsey, 1995; Hodgkin and
Huxley, 1990)

VG a a a a ksT C?,— .
Ii :G,-(Vm—Vi):Gi Iﬁ+—1/f7—%lnca— , 1i=1,2,3,
i+

(51)

where the Nernst potential V is defined as the last term in the
bracket. The conductances G; are given by Xu and Lavan (2008)

Gi = 8gvam® h+ &ngteak: G2 = 8kN* + Zkcteak:  G3 = &a. (52)

where gy, &k, &ci» Ena.leak: &k leak AT€ constants, and m, h, n are the
gating variables whose dynamics are given in Appendix A. Fol-
lowing Xu and Lavan (2008), we assume that there is no chloride
channel on innervated membrane and set g = 0.

The current from the Kir channel in (4) is given by

8kir Vi — V)

léﬁr —
1 + e Va-Vi+ny)

(53)

where g;- is the maximum conductance of Kir channel, F = egN,
is Faraday’s constant, R = kgN,4 is the gas constant, and n; and n,
are two parameters.
In Xu and Lavan (2008), the currents through the receptor in
(6) are restricted to the case
R=r K=o, (54)
where I is given by Sheridan and Lester (1977); Magleby and
Stevens (1972); Xu and Lavan (2008)
_ [A]2gge—"
A2 ko
(AP + 2[A] =

*

1

v
s Vi —Vo), 2k =a=oape", (55)

ki1kia

where g is the conductance for the open receptors, and o, Vg, V4
are parameters determined from experimental data.

At the non-innervated membrane x = b, Goldman-Hodgkin-Katz
(GHK) model (Hille et al., 2001; Xu and Lavan, 2008) is used for
the currents in (7)

VPF? (cﬂ - c?g*%%ﬁ)
RT(1— e V)

where P; is the permeability. Other choices could be the HH type
currents as in (51) with fixed conductances.

I’ = P2 . i=2,3, (56)
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Fig. 3. Numerical results to generate the resting state in step (I); (a) the dynamics of membrane potential V, (b) Distribution of electric potential at resting state.
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Fig. 4. The variation and dynamics of electric potential, (a) position and time dependence, and (b) dynamics at four spatial locations, i.e., both sides of the two membranes.

The pumps (Goldshlegger et al., 1987; Novotny and Jakobsson,
1996) in both membranes are not needed since it has little impact
on fast AP dynamics. It restores the equilibrium Na* and K* con-
centrations over a much longer timeframe. Thus we set in (8) that
Ipump — 0
; )

i=1,2,3. (57)

5.2. Numerical results

The computation is carried out in two steps: (I) the resting
state is generated when the receptor is closed; and (II) the dy-
namics of the electric potential is simulated when the receptor is
activated.

In step (1), the resting state is generated by setting If = I§ =0in
(6). Fig. 3(a) shows the dynamics of membrane potentials V% and
VP, At the innervated membrane x = a, the flux of potassium ion is
negative, i.e. from IC region to EC region, while the flux of sodium
ion is positive. At the non-innervated membrane x = b, fluxes of
potassium and chloride ions are from IC region to EC region. After
certain time period, the net current across each membrane tends
to 0. The resting potentials are calculated as

Viale=sx10-4 = ¥ — ¥ = —3.2443,
Vhlizswios = V2 — 0 = —3.2414,

and the original values before scaling is about -84 mV (similar to
the value in Xu and Lavan (2008)). Fig. 3(b) shows the distribu-
tions of electric potential ¥ at the resting state. It indicates that
the electric potential ¥ is almost a constant at each of the three
bulk regions, and there are thin BLs on both sides of the mem-
branes. The variation of ¥ in the BLs is consistent with the esti-
mates in (45).

(58)

In step (II), the ACh receptors are activated, inducing extra flux
of sodium ion, given by (54), (55). The resting state in Fig. 3(b) is
used as the initial state. Fig. 4 shows the dynamics of electric po-
tential up to full depolarization. Fig. 4(a) is the position and time
dependence of i, and Fig. 4(b) shows dynamics at four spatial
locations, i.e., both sides of the two membranes at x =a and b.
Fig. 4(b) shows that the electric potential on the left side of the in-
nervated membrane is almost a constant 0, determined by the left
boundary condition. The electric potentials on the right-side of the
innervated membrane and on the left-side of the non-innervated
membrane are almost identical, indicating that i is almost a con-
stant in the bulk of the IC region.

Fig. 4 (@) can be further illustrated by snapshots at various
times as depicted in Fig. 5. Note that, unlike the subfigures in
Fig. 3(b), BLs are hardly observable in the scale of Fig. 5. From
Figs. 3(b) to 5(a), electric potential ¢ in the IC space increases
rapidly since receptors are open and more sodium ions flow
through the innervated membrane from the EC space into the
IC space. From Fig. 5(a) to (b), electric potentials adjust slightly,
due to the synergy of various fluxes and conductances. This cor-
responds to small variations by the curves for t €[0.2,1.2] x
10~ in Fig. 4(b). The electric potentials in (a, b) and (b, 1) in-
crease significantly again from From Fig. 5(b) to (d). Finally, the
membrane potential at the innervated membrane reaches up to
2.7 (70mV in physical units) and transcellular potential reaches
about 6.0 (155mV), while the membrane potential at the non-
innervated membrane remains at its resting equilibrium all the
time. Figs. 4 and 5 confirm our asymptotic analysis that ¥ remains
as piecewise constants in the bulk regions, and the estimated time
scale in (22) is also confirmed. This property of constant electric
potential in the bulk of IC region provides the justification that the
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Fig. 5. The electric potential at (a) t = 107%, (b) t = 1.2 x 1075, (c) t = 1.55 x 103, (d) t = 4.0 x 10~>, where EC and IC spaces stand for extracellular and intracellular spaces,
respectively.
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Fig. 6. The variation and dynamics of electric potential for relatively long time, (a) the position and time dependence, and (b) the dynamics of two membrane potentials.
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Fig. 7. The dynamics of all nonzero membrane currents in (17) and the total current: (a) at the innervated membrane x = a, (b) at the non-innervated membranes x = b.
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ion in (b) left extracellular space (d) intracellular space and (f) right extracellular space.
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Fig. 10. The two membrane potentials with the receptor open for both sodium and
potassium ions.

transcellular potential, ¥ (1) — ¥ (0), can be obtained by the su-
perposition of the two membrane potentials, V& — V2.

Fig. 6 shows the dynamics for the entire course of the AP.
Fig. 6(a) shows the dependence of the electric potential in both
space and time, and Fig. 6(b) shows the membrane potentials at
x =a and b. The previous Fig. 4 corresponds to the rising phase of
Fig. 6. It is clear that the membrane potential V% at the innervated
membrane x = a experiences an AP (Gotter et al., 1998; Xu and La-
van, 2008). It starts from resting state —83.8 mV, peaks at about
70mV, and finally recovers to the resting state. The membrane po-
tential V2 at x = b keeps at its resting state all the time. These are
consistent with our asymptotic analysis.

To examine the roles played by each individual flux, we plot
the all the nonzero fluxes (currents) and total current at the inner-
vated and non-innervated membranes in Fig. 7(a) and (b). The red
line in Fig. 7(a) denotes the total current at the innervated mem-
brane, which remains small. Initially, an extra current is induced
by flux of sodium ion through the receptor, when acetylcholine
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(ACh) is released near the receptors. As a result, voltage-gated Na*
channels are activated, and I‘{G increases during the depolarization
phase of the AP. In the meantime, since V% changes rapidly, the
flux in the opposite direction from Kir channels becomes signif-
icant and balances most fluxes from receptor and Na* channels.
Near the peak of the AP, fluxes from Kir channel, Na* channels
and receptor become much smaller and the current from receptor
is reversed. During the repolarization phase of AP, voltage-gated K*
channels open and play a significant role to balance other fluxes.
Subsequently, fluxes from Na* and Kir channels increase again and
balance each other. Finally, all fluxes decay to 0 or negligible values
when it restores back to the resting state. In Fig. 7(b), fluxes at the
non-innervated membrane are steady and small, since there are no
receptors there. This leads to a constant membrane potential V5 as
shown in Fig. 6(b).

In our analysis, we interpreted the innervated and non-
innervated membranes as capacitors. Now we verify this approx-
imation and compute excessive charge at each side of the mem-
branes. As in (41), we define excessive charge for each ion species
at two sides of the innervated membrane as

a 0.5
Qu.i= /0 G0 — G(0)dX, Qey= / 6(x) — (0.5)dx,

i=1,2,3. (59)

The total excessive charges, namely the net charges, at the left
and right sides of the innervated membrane are computed by
>3 12iQq; and Y7 z,Qu+ ;. Similar quantities can be computed at
the non-innervated membrane. Fig. 8(a) and (b) present the time
history of excessive charges of K* and Nat at both sides of in-
nervated membrane during an AP. Fig. 8(c) shows the net charge
at both sides of the innervated membrane, which indicates that
the net charge is much smaller than excessive charges of Na‘t
and K*. These two net charges have the same magnitude but
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Fig. 11. The comparison of electric potential and the concentrations Na*, K* and Cl- at t =5 x 10~> for the two cases, with or without potassium flux through the receptor.
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Fig. 12. The dynamics of two membrane potentials with gz =800C/(V-s-m?),
Vi =86 mV and ap = 1.23 ms~1.

opposite signs, which implies that the membrane does act as a ca-
pacitor during AP. The profiles are similar to that of V& in Fig. 6(b),
as they can be approximated by +C,V% (like equations (42), (43)).
This agrees with our analysis and the results using the membrane
model (Xu and Lavan, 2008).

Fig. 9 shows the dynamics and variation of concentrations of
sodium and potassium ions in three regions (Chloride ion is omit-
ted for brevity). In the bulk, it is clear that the concentrations re-
main almost constants and vary only near the two membranes. The
variation near the membrane is also at a small scale, which justi-
fies the use of bulk value as leading approximation in the previ-
ous analysis. It further implies that AP is indeed caused by a small
amount of ions’ movement across the membrane, compared with
a much larger quantity in the bulk regions. Near the innervated
membrane x = a, ion concentrations adjust during AP, while at the
non-innervated membrane x = b ion concentrations do not vary,
which is consistent with its membrane potential V5 being steady
at resting state.

So far, we have considered the case that only sodium ions go
through ACh receptors, but in general ACh receptors are not selec-
tive and allow currents of many cations (Adams, 1981). In the fol-
lowing, we consider the case that the receptors are open for both
Na* and K*. We set

’=2r BK=-I, (60)

so that the total current across the receptors is still I¥, given by
(55). Fig. 10 presents the profiles of two membrane potentials in
this case, which are almost identical to Fig. 6(b). At t =5 x 107>,
Fig. 11 compares the two cases for the spatial variation of the elec-
tric potential and the three ion concentrations Nat, K* and Cl-.
In each subfigure, the blue and red lines represent the cases with
and without potassium flux through the receptors. Fig. 11(a) shows
that the difference of electric potentials is also negligible (about
9 x 10~4) for both cases. Since the receptors are on the innervated
membrane, there is a small difference (similar scale 10~4) in con-
centrations near the innervated membrane. Therefore, the interpre-
tation of currents from receptors has little impact on the spatial
variation and dynamical process.

Before we end this section, we would like to discuss a com-
mon issue in modeling a complex system with parameter uncer-
tainties. Most parameters in Appendix B are either constants or de-
termined by experiments and considered to be reliable. However,
this is not the case for some parameters such as gg, which is re-
ported to be in the range [700, 2000]C/(V -s- m?2). The lower bound
700 is used in our computations. In addition, the values of param-
eters V; and o could vary with different temperatures. To inves-
tigate the effect of these parameters, we performed computations
by using the following values gz = 800C/(V-s-m?), V; =86 mV
and a = 1.23 ms~! (Sheridan and Lester, 1977). Fig. 12 shows the

dynamics of the membrane potentials. It can be seen that there is
repeated AP on the left innervated membrane, instead of just one
AP in the previous computation. We speculate that this could be
the case when electrocytes operate under different temperatures.
But a more careful investigation is needed before we can reach
any concrete conclusions. Mathematically, these parameters affect
the current strength through ACh receptors in (6), which increases
with a larger g and decays more slowly with a smaller «. When
this receptor initiated current is sufficiently strong when the mem-
brane repolarizes after generating its first AP, a new AP could be
triggered.

6. Conclusions

In this paper, we have formulated a mathematical model to
study the mechanism of electric potential generation in electric
eels. Our PNP model explores AP generation at the innervated
membrane through the activation of the ACh receptors and Na™
and K* channels, and shows that electric potential holds almost
uniform across the entire EC and IC bulk regions. In addition, we
show that the dynamics of membrane potentials can be approx-
imated by interpreting membranes as capacitors, and the non-
innervated membrane is kept at resting equilibrium state all the
time. Our asymptotic analysis justifies the superposition of inner-
vated and non-innervated membrane potentials to constitute the
transcellular potential observed in the previous membrane model
(Xu and Lavan, 2008) and our numerical solution of the PNP sys-
tem confirms that. Finally, we note that we have considered the
issue of electric potential generation of electrocyte in an open cir-
cuit. In this case, we have showed that there is almost no current
in the EC and IC spaces, and the transcellular potential is gener-
ated by two membranes acting as capacitors. During discharge in
a closed circuit, there will be an external current and other inter-
esting interactions but the same framework should be applicable.
The project for the case of a closed circuit is ongoing, and we plan
to investigate the combined effect of electric generation and dis-
charge.
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Appendix A. The dynamic system of m, n, h

The dynamic system of m, n, h is

d

d—r; =ay(1—n) - Bun,

dm

dar =am(1-m)— Bmm,

dh

7 = (1 =h) = Bph. (A1)

The coefficients depend on V% and are given by

V3 +0.0164

ap =238 x 10% . e"bomr,

V4400164

Bn =171 x10% . g~ "bors

_ V§+00618

Bm = 2.59 x 10% . e~ ~ooom2

V4 +0.0618

Om = 2.64 x 104 . e 005 |

a a
v"é +0.0545 Vin

+0.0545
“tomr By = 1.49 x 103/(0.0745 + e~ oo ),
(A.2)
where «; and B; (i =n, m, h) are dimensionless parameters scaled
by 1/(16.9s) (where 16.9 s comes from the diffusion time scale in

this paper), V& are values in unit Volt. With V& = —-0.084 V, we
obtain the steady state solution

ny = 0.008458, my =0.1622,

ap = 1.08 x 10% . e~

ho = 0.9967, (A3)



12 X. Cao, Z. Song and T.-L. Horng et al./Journal of Theoretical Biology 487 (2020) 110107

which are used as initial values of the time-dependent problem to
simulate action potential.

Appendix B. The parameters and data

The data are mainly from Hodgkin and Huxley (1990);
Pods et al. (2013); Sheridan and Lester (1977); Magleby and
Stevens (1972) and the book in Liu and Eisenberg (2014). The tem-
perature in Xu and Lavan (2008) is set to be 27°C so we get
T =300.15 K. The other constants are

kg = 1.38 x 10723]/JK N4 = 6.022 x 10?3 /mol,
ep = 1.602 x 10-1°C ¢g = 8.854 x 10~12C/(V - m),
F=e)Nsy R= kBNA.

The typical bulk concentrations (see Gotter et al. (1998)) for Na*,
K*, CI™ are

¢, Nat ¢, Kt c3, CI™ q
Extracellular 160 mM 2.5mM 1625mM 0
Intracellular 8.928mM  72.048mM  9.328mM  —-71.648 mM

which are used as initial conditions (scaled by cy below). Some
typical values are

€ =80, €"=2, cy=160mM = 160 mol/m>,
hm=5nm, L=130 um, a=25pum, b=105 um, (B.1)
Do =10°m?2/s, Dy =1.33Dyg, D, =1.96Dy, D3 =2.03Dy.

The conductances and parameters in flux formulas are given by
Xu and Lavan (2008); Magleby and Stevens (1972)

Zna = 157mS/cm? = 1570C/(V - s - m2),

& =320C/(V-s-m?), gg=0C/(V-s-m?),

Gnateak = 0.2761C/(V-5-m?)  Zi o = 31.5390C/(V - s - m?),
8kir =591C/(V-s-m?), gr=700C/(V-s-m?),

PL=0, P,=112x10°%m/s, P;=7.63 x 10~3my/s,

ny =145, n;=-0.0630V, [A]=0.1mol/m3,

Vo=0, V;=12579 mV, op=1.67 ms~' =1.67x 103 s71,
ki =7 x10% m3/(mol-s), k_;/k;q =2 x 1072 mol/m3.

(B.2)

From the above data, we get the scales

LT ~259mV. L =169s, Ap=1.0893x 107 m,
Go = 4592.2C/(V-5-m?), Py =7.69 x 105 m/s,

Io = 118.74 C/(s-m?).

(B.3)

Appendix C. The dimensionless parameters and formulas

The dimensionless parameters are
€=838x10% €,;=132x107"°,
hm =3.85x 107>, a=0.1923, b=0.8077,
Dy =133, D,=1.96, D;=2.03, q=-0.4478,
ap=2.82x%x10% n; =145 ny=-2.4366,
8nva = 03419, g =0.06968, gq=2.18 x 1074, (C1)
ENateak = 6.0123 x 107> g jeqx = 6.8679 x 1073,
gir = 0.1287, gr=0.1524, Vy =0, V;=4.386,
[A]=6.25x10%, k,p=1.89x107, k_;/k;1=1.25x10"%,
P=0, P,=0.1455, P;=0.009914.

The dimensionless formulas of currents are

1, ¢
1ve Gi(v,,“1 - In Cla)
1 i+

gmr(Vr?. - Vza) Ve — 1//.0 _ wa
1 4+ em(Vi-Vi+m)’ m— ¥+ -

Kir __
L' =

vh <cf’ —ch +e*Zan2)
b _ p2 -k
I = Pz Y
(1 —e2m)

and the form of I§ in (55) will not change.
The functions Fji and F;; in (31) are given by

) (C2)

CA
Fir =,/ ﬁ\/ 2ch<€(%*¢3>/2 - 1), i=12,
Fyg = /263R<e<w£fw)/z _ 1)’

C.
FjL — T;i /ZCjL<e(WL71/j’b)/2 — 1), j= ‘l’ 2’

(C3)

Fy = /203, (ew/ﬁ—xm)/z _ 1>,

where subscript L and R mean the left and right limits from the
bulk solutions.

Appendix D. Estimates of (45) and (46)

As the BL is O(Ap), by mean value theorem, we have

[ (b*) — Y ()] ~ O(hpldxr| (€. D) ~ 0(hp S Jal), £ (b, 1),
(D.1)

in other words, we get

WO~ v D] ko 02)

VAl € hy
In the case of ¢, = 160 mM, h;; =5 nm and Ap = 1 nm, we obtain

A 200 (>3
Similarly we get
[ (b”) — ¥ (0.5)] 1
T O(m). (D.4)
Combining the two, we get
1) — ¥ (0.5 101
W@ -y©3)] 4101, (D.5)

%4 100

and hence it is approximately well i~f we replace V2 by bulk dif-
ference ¥ (1) —v(0.5) (this is also V2 as ¥ is constant in bulk).
Similar arguments apply to V.
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