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a b s t r a c t 

In this paper, we developed a one-dimensional model for electric potential generation of electrocytes in 

electric eels. The model is based on the Poisson–Nernst–Planck system for ion transport coupled with 

membrane fluxes including the Hodgkin–Huxley type. Using asymptotic analysis, we derived a simpli- 

fied zero-dimensional model, which we denote as the membrane model in this paper, as a leading order 

approximation. Our analysis provides justification for the assumption in membrane models that electric 

potential is constant in the intracellular space. This is essential to explain the superposition of two mem- 

brane potentials that leads to a significant transcellular potential. Numerical simulations are also carried 

out to support our analytical findings. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Electric eels ( electrophorus electricus ) have interested scientists

or centuries. Electric discharge was discovered by scientists in

ate 1700s, and was generated by an identifiable electric organ

 Markham, 2013 ). The high-voltage electric discharge is used to

tun prey or defend themselves from predators ( Nelson et al.,

016 ), while high-frequency or low-intensity discharges are used

or active sensing and communication ( Catania, 2015a; Lissmann,

958 ). The electric organ has several thousands of electrogenic

ells, called electrocytes, stacked in series. Each electrocyte pro-

uces a potential difference of 0.15 V, but stacked electrocytes can

enerate a huge voltage similar to stacked plates in a battery

 Gotter et al., 1998; Mauro, 1969 ). 

Electrocytes work much like muscle or nerve cells. The mech-

nism of voltage generation is associated with the membrane po-

entials and ionic fluxes (currents) across the membranes of elec-

rocyte. There is an ion concentration gradient across membrane,

hich maintains an equilibrium membrane potential at resting

tate (approximately −85 mV for electrocyte). Electrocyte pos-

esses two primary membranes: the innervated membrane and
∗ Corresponding author. 

E-mail addresses: hhuang@uic.edu.hk , hhuang@mathstat.yorku.ca (H. Huang). 
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he non-innervated membrane ( Gotter et al., 1998; Xu and Lavan,

008 ), where various types of transmembrane proteins (such as

on channels and pumps) abound and work in synergy to generate

nusual phenomenon or fulfil a function. Like in nerve cells, ac-

ion potential (AP) can be triggered at the innervated membrane,

hich in turn causes a difference in electric potential (0.15V). Such

echanism has been utilized to design synthetic cells, aiming to

onvert ion concentration gradient to APs, which has potential ap-

lications for powering medical implants ( Humayun et al., 2003;

u and Lavan, 2008 ). 

Since the 1950s, many experiments have been conducted to

nvestigate the electrogenic mechanisms and the functions of elec-

ric discharge with different intensity or frequency. It was reported

hat ( Brown, 1950; Coates, 1950 ) high-voltage discharge produced

y eels can be as high as 600 V and the external current can be

p to 1 A. Recently, Catania (2015b) showed that the high-voltage

ischarge with high frequency can be used to track fast-moving

rey and guide the strike, similar to the “terminal feeding buzz”

f bats. He also investigated the electromotive force and internal

esistance for discharge during the defensive leaping behavior

 Catania, 2017a; 2017b ), by an equivalent circuit. In addition, there

ave been many investigations on voltage-gated channels, AP,

nd waveforms of discharge of electrocytes ( Dunlap et al., 1997;

otter et al., 1998; Noda et al., 1984 ). For more experimental
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.110107&domain=pdf
mailto:hhuang@uic.edu.hk
mailto:hhuang@mathstat.yorku.ca
https://doi.org/10.1016/j.jtbi.2019.110107


2 X. Cao, Z. Song and T.-L. Horng et al. / Journal of Theoretical Biology 487 (2020) 110107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

P  

d  

n  

o  

n  

p

2

 

e  

a  

(  

v  

b  

i  

t  

s  

w  

l  

p

 

t  

c  

s  

e  

o  

(  

o  

i  

a  

n

a  

b  

L  

v  

Fig. 1. (a) Two-dimensional view of stacked electrocytes, where EC and IC stand 

for extracellular and intracellular respectively, (b) the one-dimensional setup of unit 

structure of electrocyte, where VG stands for voltage-gated. 
studies, see also Keynes and Martins-Ferreira (1953) ;

Markham (2013) ; Sheridan and Lester (1977) . 

Many mathematical models can describe various ion transport

through ion channels, including the famous Hodgkin–Huxley (HH)

model ( Hodgkin and Huxley, 1990 ) and Goldman–Hodgkin–Katz

(GHK) model ( Hille et al., 2001 ). The HH model has been used to

show AP in squid giant axon ( Hodgkin and Huxley, 1952; George

et al., 2015 ), but could not be directly applied to the electrocyte

due to cell polarity. In the HH model for squid axon, all types of

ion channels are assumed to be distributed uniformly on the cir-

cumferential membrane. The membrane potential to be computed

in HH model is the difference between intracellular and extracel-

lular electric potential. Basically, intracellular and extracellular po-

tentials are assumed to be constants in space, and the HH model is

an ODE or membrane model unable to accommodate the boundary

layer (BL, electric double layer) of the membrane. 

In Xu and Lavan’s membrane model ( Xu and Lavan, 2008 ), var-

ious types of ion channels and pumps ( Altamirano, 1955; Gotter

et al., 1998; Keynes and Martins-Ferreira, 1953 ) are assumed to

be distributed on innervated and non-innervated membranes re-

spectively. The electric potentials in and outside the electrocyte

are assumed to be constants as in the HH model for squid axon.

However, there is a crucial difference between the two cases since

the two extracellular domains next to the innervated and non-

innervated membranes are separated, while the extracellular do-

main in the HH model for squid axon is connected. This was not

addressed in Xu and Lavan (2008) and the innervated and non-

innervated membrane potentials were computed using two inde-

pendent ODEs. It was shown that the innervated membrane is de-

polarized from −85 mV to 65 mV before re-polarizing and return

to the resting state. For the non-innervated membrane, it was im-

plied that the potential remains at its resting state regardless the

changes at the innervated membrane. These two membrane po-

tentials are superposed to obtain the transcellular potential up to

150 mV. The total potential of the electric organ can be obtained

by summing the transcellular potentials of electrocytes since they

are placed in series. This superposition principle is valid provided

that the electric potential does not vary in the intracellular do-

main, except in the BLs next to the innervated and non-innervated

membranes. These issues provide the main motivation for explor-

ing the dynamics of a model electrocyte through a PDE approach

since they can not be addressed by the membrane model in Xu and

Lavan (2008) , which does not allow for spatial variations of elec-

tric potential inside each of the three domains (one intracellular

and two extracellular domains). 

In this paper, we investigate the mechanism of electric poten-

tial generation of electrocytes in the case of an open circuit. We

start with a more fundamental model for ion transport in bio-

logical systems. The model consists of electro-diffusion (Nernst-

Planck) equation for major ion species such as sodium, potassium

and chloride, and a Poisson equation for the electricity field. This

Poisson-Nernst-Planck (PNP) system has been successfully applied

to model ion transport in cells and ion channels ( Liu, 2009; Ru-

binstein, 1990; Mori et al., 2011; Kenny et al., 2018; Gardner and

Jones, 2011 ), as well as AP propagation in axons when coupled

with the HH membrane fluxes ( Pods et al., 2013; Song et al., 2018a;

2018b ). Using asymptotic analysis, we have derived a membrane

model from our PNP model, which is consistent with the one in

Xu and Lavan (2008) . Our analysis provides the justification of the

assumptions made in Xu and Lavan (2008) . In the leading approxi-

mation, the electric potential in the bulk of intra/extra-cellular re-

gions holds uniform, and the membrane can be treated as a capac-

itor with effective charges stored in BLs. 

The rest of the paper is structured as follows. The complete for-

mulation with PNP system and general ionic flux models through

membranes is given in Section 2 . The non-dimensionalization is
onducted in Section 3 . Section 4 studies important features of the

NP system by asymptotic analysis, and the membrane model is

erived. In Section 5 , specific flux models are adopted and detailed

umerical simulations are carried out to illustrate the mechanism

f potential generation and to verify other features in analysis. Fi-

ally, we summarize our findings and comment on a follow up

roject with a closed circuit. 

. Problem formulation 

Fig. 1 (a) illustrates the two-dimensional (2D) view of stacked

lectrocytes. The transmembrane proteins in the electrocytes

re asymmetrically distributed across two primary membranes

 Keynes and Martins-Ferreira, 1953; Gotter et al., 1998 ), one inner-

ated and the other non-innervated. As the high voltage generated

y electric eel’s electric organ is a superposition of the difference

n electric potential generated by electrocyte in series, we concen-

rate on a unit structure of electrocyte, illustrated in Fig. 1 (b). For

implicity, we treat the electrocyte as a one-dimensional structure,

ith one intracellular (IC) region in the middle and two extracel-

ular (EC) regions on two sides. Let a and b denote respectively the

ositions of innervated and non-innervated membranes. 

Poisson-Nernst-Planck (PNP) system is often used to describe

he transport of ions in cells. It is derived by treating ions as point

harges and provides a very good approximation for dilute ionic

olutions ( Kilic et al., 20 07a; 20 07b; Song et al., 2019 ) as in the

xtracellular and intracellular regions here (the relative error is

f order 10 −3 by estimate from steric PNP models). Ionic currents

or fluxes) through membrane are given by various experimental

r empirical models, depending on the types of ion channels

nvolved. The general forms of the currents are presented here,

nd the specific examples are given in Section 5.1 to show the

umerical results. 

In this paper, we focus on three ion species Na + , K 

+ and Cl −

s in Fig. 1 , since they are the three major ions (sometimes called

io-ions) most relevant for generating electric pulses in electrcytes.

et c i ( i = 1 , 2 , 3 ) denote concentrations of Na + , K 

+ and Cl 
−
, with

alences z 1 = z 2 = 1 , z 3 = −1 . The one-dimensional PNP system is
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iven by Rubinstein (1990) ; Song et al. (2018b) 

ε0 εr ∂ xx ψ = e 0 N A 

( 

3 ∑ 

i =1 

z i c i + q 

) 

, x ∈ (0 , a ) ∪ (a, b) ∪ (b, L ) , 

(1) 

 t c i = −∂ x J i , J i = −D i 

(
∂ x c i + 

z i e 0 
k B T 

c i ∂ x ψ 

)
, i = 1 , 2 , 3 , (2)

here the first (Poisson) and the second (Nernst–Planck) equations

overn the electrostatic potential ψ( x , t ) and ionic concentration

 i ( x , t ), respectively. There is negative fixed charge q in the intra-

ellular region, while q = 0 in the extracellular regions. The ionic

uxes J i ( i = 1 , 2 , 3 ) consist of two parts, due to the ionic concen-

ration gradient and the electric field, and D i ( i = 1 , 2 , 3 ) are the

iffusion constants. Other parameters (given in Appendix B ) are

acuum permittivity ε0 , relative permittivity εr , elementary charge

 0 , Avogadro constant N A , Boltzmann constant k B , and absolute

emperature T . 

The left membrane x = a corresponds to the innervated mem-

rane of electrocyte. On this membrane, there are voltage-gated

hannels ( Bezanilla, 2007; Malmivuo and Plonsey, 1995; Hodgkin

nd Huxley, 1990 ), inward rectifier K 

+ channels (Kir) ( Nygren et al.,

998 ), and acetylcholine receptors (AChRs) ( Adams, 1981 ). The

embrane currents are assigned as positive if they are from intra-

ellular region to extracellular region. The current through voltage-

ated channels is given by 

 

VG 
i = I VG 

i (V 

a 
m 

, c a i, + , c 
a 
i, −; θ ) , i = 1 , 2 , 3 , (3)

here V a m 

= ψ 

a + − ψ 

a − is the membrane potential at membrane x =
, and θ represents the gating variable(s), whose dynamics de-

ends on V m 

. Hereafter, superscripts a and b mean the innervated

nd non-innervated membranes at x = a and x = b, and ± denote

he right and left limits of quantities on the membrane. Although

he concentrations of other ions are not explicitly shown in the

ormula (3) of ion species i , their effects are reflected in the mem-

rane potential V a m 

which is determined by all ions. 

Additional current from rectifier K 

+ channel (Kir channel) takes

he form Nygren et al. (1998) ; Xu and Lavan (2008) 

 

Kir 
2 = I Kir 

2 (V 

a 
m 

, c a 2 , + , c 
a 
2 , −) . (4)

his channel is specific for K 

+ and the conductance is considered

o be a constant, which is different from the voltage gated channels

iscussed earlier. 

The stimulus current is generated by special receptors, which

re open when two agonists, such as acetylcholine ACh, bind with

hem Mitra et al. (2005) ; Xu and Lavan (2008) . The chemical bind-

ng process is described by an allosteric kinetic model ( Chakrapani

t al., 2004; Adams, 1981 ) 

 A + R 

2 k +1 ⇐⇒ 

k −1 

A + AR 

k +2 ⇐⇒ 

2 k −2 

A 2 R, (5)

here R and A denote the receptor and the agonist, k +1 , k −1 , k +2 

nd k −2 are the association and dissociation rate constants of the

inding processes. The rate constants k ± 1 , k ± 2 are assumed to be

onstant independent of concentrations, and are often determined

xperimentally. In general, the ACh receptor is not selective and

llows currents of many cations ( Adams, 1981 ). This is the main

echanism to induce extra current initially to disturb the equi-

ibrium state, which is necessary to trigger AP later controlled by

oltage-gated channels. The extra current through these receptors

ill gradually decay to 0. The general forms for the currents of Na + 

nd K 

+ through the receptor are written as 

 

R = I R (V 

a 
m 

, [ A ] , k ±1 , k ±2 , t) , i = 1 , 2 , (6)
i i 
here [A] is the concentration of the agonist. As it is the total

urrent I R 1 + I R 2 that is determined experimentally, we will com-

are several combinations with the same total current in numerical

imulations in Section 5 . The effects of concentrations are reflected

n the membrane potential V a m 

. 

At x = b is the non-innervated membrane of electrocyte, where

here are both channels (K 

+ and Cl −) and pumps (Na + /K 

+ ). The

eneral forms for the currents through the channels are denoted

y 

 

b 
1 = 0 , I b i = I b i (V 

b 
m 

, c b i, −, c b i, + ) , i = 2 , 3 , (7)

here V b m 

= ψ 

b − − ψ 

b + is the membrane potential at membrane x =
. Since there are no Na + channels on this membrane, Na + cur-

ent is set to be 0. These channels have constant conductance (not

oltage-gated), and will react to the changes in electrical potentials

nduced by the other innervated membrane. The currents through

he pumps are Goldshlegger et al. (1987) ; Novotny and Jakobs-

on (1996) 

 

pump 
i 

= I pump 
i 

(V 

b 
m 

, c b 1 , −, c b 1 , + , c 
b 
2 , −, c b 2 , + ) , i = 1 , 2 , I pump 

3 
= 0 . (8)

he pumps are responsible to recover and maintain equilibrium

oncentrations. 

These currents provide the flux conditions at the two mem-

ranes for the PNP system 

z 1 e 0 N A J 1 = I VG 
1 + I R 1 , at x = a, 

z 2 e 0 N A J 2 = I VG 
2 + I R 2 + I Kir 

2 , at x = a, 

z 3 e 0 N A J 3 = I VG 
3 , at x = a, 

z i e 0 N A J i = I b 
i 

+ I pump 
i 

, i = 1 , 2 , 3 , at x = b. 

(9) 

wo conditions for ψ are also needed on each membrane. Assume

hat the membranes have thickness h m 

and relative permittivity
m 

r , and with a constant electric field. Thus, the electric potential

s linear inside both membranes, which implies 

εr ∂ x ψ | x = a ± = εm 

r 

ψ 

a 
+ − ψ 

a 
−

h m 

, εr ∂ x ψ | x = b± = εm 

r 

ψ 

b 
+ − ψ 

b 
−

h m 

, (10) 

here a ± and b ± denote the left and right limits at x = a and b . 

We use typical bulk concentrations ( Gotter et al., 1998 ) under

lectro-neutrality as the initial values at t = 0 

 1 (x, 0) = 160 mM , c 2 (x, 0) = 2 . 5 mM , c 3 (x, 0) = 162 . 5 mM , 

for 0 < x < a and b < x < L 

 1 (x, 0) = 8 . 928 mM , c 2 (x, 0) = 72 . 048 mM , c 3 (x, 0) = 9 . 328 mM , 

for a < x < b. 

(11) 

or the boundary conditions at x = 0 and L , we have 

(0 , t) = 0 , c 1 (0 , t) = 160 mM , c 2 (0 , t) = 2 . 5 mM , 

c 3 (0 , t) = 162 . 5 mM , 
∂ψ 

∂x 
(L, t) = 0 , c 1 (L, t) = 160 mM , c 2 (L, t) = 2 . 5 mM , 

c 3 (L, t) = 162 . 5 mM . 

(12) 

ote that ψ needs to be fixed at one position to ensure a unique

olution, and it is set to be zero on the left boundary ( x = 0 ) with-

ut loss of generality. It will be equivalent by fixing a value on the

ight boundary or at a middle point. 

. Non-dimensionalisation 

In this section, we present dimensionless system for the pre-

eding formulation, which will be used in analysis and simulation.

e adopt the following scalings 

˜ 
 = 

ψ 

k B T/e 0 
, ˜ c i = 

c i 
c 0 

, ˜ q = 

q 
c 0 

, ˜ D i = 

D i 
D 0 

, ˜ t = 

t 
L 2 /D 0 

, 

˜ 
 = 

x 
L 
, ˜ h m 

= 

h m 
L 

, ˜ a = 

a 
L 
, ˜ b = 

b 
L 
, ˜ J i = 

J i 
D c /L 

, 
(13) 
0 0 
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where c 0 is the extracellular bulk concentration of Na + , D 0 is typ-

ical diffusion constant, L is the total length of unit structure, and

the diffusion time scale is adopted. The currents I i on the right-

hand side of (9) and the associated conductances and permeabili-

ties therein are scaled respectively by 

I 0 = 

c 0 D 0 e 0 N A 

L 
, G 0 = 

c 0 D 0 e 
2 
0 N A 

k B T L 
, P 0 = 

D 0 

L 
. (14)

The values of the above quantities in scaling are given in

Appendix B . 

In the following, we remove the tilde for simplicity, and use the

same notations for the dimensionless quantities. For intracellular

and extracellular regions, the dimensionless PNP system is given

by 

−ε2 ∂ xx ψ = 

3 ∑ 

k =1 

z k c k + q, x ∈ (0 , a ) ∪ (a, b) ∪ (b, 1) , 

∂ t c i = −∂ x J i = D i ∂ x ( ∂ x c i + z i c i ∂ x ψ ) , i = 1 , 2 , 3 , 

(15)

where we have q = −0 . 4478 for a < x < b and q = 0 for the other

regions. The parameter ε is defined by 

ε = 

λD 

L 
, λD = 

√ 

ε0 εr k B T 

e 2 
0 
N A c 0 

, (16)

where λD is the Debye length. 

At the membranes, we have the flux conditions 

−z 1 J 1 = I VG 
1 + I R 1 , at x = a, 

−z 2 J 2 = I VG 
2 + + I R 2 + I Kir 

2 , at x = a, 

−z 3 J 3 = I VG 
3 , at x = a, 

z i J i = I b 
i 

+ I pump 
i 

, i = 1 , 2 , 3 , at x = b. 

(17)

The interface conditions at membranes for ψ become 

ε2 ∂ x ψ 

∣∣
x = a ± = ε2 

m 

ψ 

a 
+ − ψ 

a 
−

h m 

, ε2 ∂ x ψ 

∣∣
x = b± = ε2 

m 

ψ 

b 
+ − ψ 

b 
−

h m 

, (18)

where 

εm 

= 

√ 

ε0 εm 

r k B T 

e 2 
0 
N A c 0 L 2 

. (19)

All the dimensionless parameters are given in Appendix C . 

The dimensionless initial values at t = 0 are given by 

c 1 (x, 0) = 1 , c 2 (x, 0) = 0 . 0156 , c 3 (x, 0) = 1 . 0156 , 

for 0 < x < a and b < x < 1 , 

c 1 (x, 0) = 0 . 0558 , c 2 (x, 0) = 0 . 4503 , c 3 (x, 0) = 0 . 0583 , 

for a < x < b. 

(20)

For the boundary conditions at x = 0 and 1, we have 

ψ(0 , t) = 0 , c 1 (0 , t) = 1 , c 2 (0 , t) = 0 . 0156 , 

c 3 (0 , t) = 1 . 0156 , 
∂ψ 

∂x 
(1 , t) = 0 , c 1 (1 , t) = 1 , c 2 (1 , t) = 0 . 0156 , 

c 3 (1 , t) = 1 . 0156 . 

(21)

4. Asymptotic analysis 

There have been attempts to study the high-voltage discharge

using membrane models ( Xu and Lavan, 2008 ) with some assump-

tions (i.e., electric potential and concentrations are uniform in bulk

EC and IC regions). In the previous section, we have formulated the

problem with a more fundamental PNP model, with no extra as-

sumptions. This section aims to use asymptotic analysis to derive

a leading order membrane model and examine the validity of the

assumptions. Firstly, note that there exist BLs next to both mem-

branes due to the fact that ε is small. In addition, there is a separa-

tion in scales between the membrane dynamics and the transport

of ions in the EC and IC regions outside the BLs. As a consequence,

the spatial distribution of electric potential ψ and concentrations
 i ( i = 1 , 2 , 3 ) can be approximated by piecewise constants in the

ulk of the EC and IC regions and membrane potential V b m 

remains

s a constant. 

.1. Constant ψ in the bulk regions 

In this subsection, we conduct asymptotic analysis to show that

 is almost constant in each bulk of the three regions. From exper-

ments and simulations as well as the estimate by the parameter

alues, the relevant time scale for AP generation in electrocytes is

illiseconds, which is mainly controlled by the time scale of the

eceptor (e.g., the parameter α0 in (55) ) and dynamics of gating

ariable θ (e.g., n , m , h in Appendix A ). It is much smaller than the

iffusion time scale (estimated at the order of 10 s). Therefore, the

atio of the two time scales is roughly the same order of ε ∼ 10 −5 ,

nd we adopt a new time scale in the following analysis 

ˆ 
 = 

t 

t 0 
, t 0 = ε

L 2 

D 0 

= 

LλD 

D 0 

. (22)

hen, the dimensionless equation for c i in (15) will become 

 ˆ t c i = −ε∂ x J i = εD i ∂ x (∂ x c i + z i c i ∂ x ψ) , i = 1 , 2 , 3 , (23)

hen 

ˆ t ∼ O (1) is of interest. 

It is well known that there are BLs of thickness O ( ε) near the

embrane (cf. Fig. 1 (b)), under normal physiological conditions.

here have been a number of BL analyses for the PNP system, and

nterested readers can find more details in Song et al. (2018b) . In

his paper, we focus on the solution in the bulk regions away from

he BLs. Hereafter, we use “bulk” to mean the bulk/inner region of

ssociated interval away from the BL near membrane. In bulk, all

he concerned quantities are at most O (1) and taking the deriva-

ive ∂ ˆ t or ∂ x will not increase the order since there is no internal

ayer in bulk. In other words, we get 

 , ∂ x ψ , . . . , =O (1) , c i , ∂ x c i , . . . , =O (1) , J i , ∂ x J i , . . . , =O (1) , 
i = 1 , 2 , 3 . 

(24)

By (23), (24) , the variation of c i in bulk is at most O ( ε), and we

onclude that c i is constant at leading order in the bulk. Taking the

erivative ∂ x on (23) gives 

 ˆ t (∂ x c i ) = −ε∂ xx J i = O (ε) , i = 1 , 2 , 3 . (25)

ith initial condition ∂ x c i = 0 at ˆ t = 0 , we have ∂ x c i (x, ̂  t ) =
 (ε) , i = 1 , 2 , 3 , in bulk. As a result, to leading order the flux in

he bulk is dominated by the drift term from electric field 

 i = −D i z i c i ∂ x ψ + O (ε) , i = 1 , 2 , 3 . (26)

y (15) 1 , we obtain the electro-neutral (EN) condition 

∑ 3 
i =1 z i c i +

 = O (ε2 ) in bulk. Then, multiplying z i in (23) and summing up

ead to 

ε∂ x 

( 

3 ∑ 

i =1 

z i J i 

) 

= ∂ ˆ t 

( 

3 ∑ 

i =1 

z i c i 

) 

= ∂ ˆ t 

( 

3 ∑ 

i =1 

z i c i + q 

) 

= O (ε2 ) . (27)

his means that the variation of total ionic current in bulk is small

∂ x 

( 

3 ∑ 

i =1 

z i J i 

) 

= O (ε) . (28)

ote that this does not mean that each individual flux across the

embrane is small, and numerical results show that it can be

ignificant. However, the total current is small and the excessive

harge mainly stays in BL as a capacitor. 

We start with the bulk region of ( b , 1). Combining (26) and

28) , and using the fact that ∂ x c i = O (ε) , at the leading order we

ave 

3 ∑ 

i =1 

z 2 i D i c i 

)
∂ xx ψ = 0 ⇒ ∂ x ψ = constant . (29)
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sing the boundary condition ∂ x ψ = 0 at x = b, we obtain ∂ x ψ = 0

nd hence ψ is a constant throughout the bulk of ( b , 1]. 

Next we examine the bulk region of ( a , b ). By (26) and the fact

 x ψ = 0 in the bulk of ( b , 1), at leading order we have 

3 
 

i =1 

z i J 
b 
iR = 0 , (30)

here J b 
iR 

is the right limit of bulk flux at x = b. Hereafter, sub-

cripts L and R denote the left and right limits of bulk quantities

t membranes. Using the results in Song et al. (2018b) , at leading

rder we have 

J b i = −z i (εJ b iR + ε∂ t F iR ) = −z i (εJ b iL − ε∂ t F iL ) , i = 1 , 2 , 3 , (31)

here J b 
iL 

is the left limit at x = b from bulk flux in the region ( a ,

 ), and the expressions of F iR and F iL are given in Appendix C . After

ultiplying z i to (31) and summing up, we have 

3 ∑ 

i =1 

z i J 
b 
iL = ε

3 ∑ 

i =1 

z i J 
b 
iR + ∂ ˆ t 

( 

ε
3 ∑ 

i =1 

z i F iR 

) 

+ ∂ ˆ t 

( 

ε
3 ∑ 

i =1 

z i F iL 

) 

. (32)

or the present case, it is easy to prove as in

ong et al. (2018b) that at leading order 

 ˆ t 

( 

ε
3 ∑ 

i =1 

z i F iR 

) 

= C m 

∂ ˆ t V 

b 
m 

= −∂ ˆ t 

( 

ε
3 ∑ 

i =1 

z i F iL 

) 

, (33)

here C m 

= ε2 
m 

/h m 

is the membrane capacitance. Physically, the

wo terms in brackets denote the excessive charge at leading or-

er (see also 
∑ 

z i Q b ±,i in (41) ). Therefore, combining (30), (32) and

33) and taking out the factor ε lead to 

3 
 

i =1 

z i J 
b 
iL = 0 , (34)

hich means the total current to the bulk of ( a , b ) is 0 at leading

rder. Eqs. (28) and (34) imply 

3 
 

i =1 

z i J i = 0 , in the bulk of (a, b) , (35)

nd hence by (26) 

3 
 

i =1 

z i J i = −
( 

3 ∑ 

i =1 

D i z 
2 
i c i 

) 

∂ x ψ = 0 , ⇒ ∂ x ψ = 0 , (36)

olds in the bulk of ( a , b ). Thus, ψ is a constant in the bulk of ( a ,

 ). 

Finally for the interval (0, a ), we can apply a similar argument

t the membrane x = a and conclude that the current in the bulk

f (0, a ) is 0 at leading order and hence that ∂ x ψ = 0 . Therefore,

e obtain ψ = 0 at leading order by using boundary condition

(0 , t) = 0 in (21) . 

.2. Derivation of the membrane model 

In this subsection, we derive a leading-order membrane model

rom the PNP model, which is consistent with that in Xu and La-

an (2008) . We also show that the membrane potential V b m 

at the

on-innervated membrane does not vary during the depolarization

nd repolarization phases of V a m 

. 

We take the membrane x = b for illustration. Using (30), (31) ,

nd (33) , we have 

 m 

∂ ˆ t V 

b 
m 

= ε∂ ˆ t 

( 

3 ∑ 

i =1 

z i F iR 

) 

= −ε
3 ∑ 

i =1 

z i J 
b 
i = −ε

3 ∑ 

i =1 

(I b i + I pump 
i 

) , (37)
here we have also used interface condition (17) 4 in the last

quality. The factor ε is present here because we have adopted

 fast time scale. In fact, there are different ways to de-

ive Eq. (37) , and they are asymptotically equivalent to that in

ong et al. (2018b) . To provide more physical insight, we start from

he original system in Section 3 . Integrating (15) 1 from b to 1, we

et 

2 ∂ x ψ(b) = ε2 (∂ x ψ(b) − ∂ x ψ(1)) = 

∫ 1 

b 

3 ∑ 

i =1 

z i c i dx, (38)

here the argument t is omitted in the derivation for simplicity.

y using membrane condition (18) , Eq. (38) becomes 

C m 

V 

b 
m 

= 

∫ 1 

b 

3 ∑ 

i =1 

z i c i dx. (39)

aking the time derivative in diffusion time scale and using equa-

ion (15) 2 , we get (i.e., (37) without ε) 

 m 

∂ t V 

b 
m 

= −
∫ 1 

b 

3 ∑ 

i =1 

z i ∂ t c i dx = 

∫ 1 

b 

3 ∑ 

i =1 

z i ∂ x J i dx 

= 

3 ∑ 

i =1 

z i (J i (1) − J i (b)) = −
3 ∑ 

i =1 

(I b i + I pump 
i 

) . (40) 

n the last equality we have used membrane condition (17) 4 and

he fact that the current at x = 1 is asymptotically 0. 

Remark. By (39) , the membrane can be interpreted as a capac-

tor. We define the excessive charge for each ionic species at two

ides of the non-innervated membrane as 

Q b −,i = 

∫ b 

0 . 5 

c i (x ) − c i (0 . 5) dx, Q b + ,i = 

∫ 1 

b 

c i (x ) − c i (1) dx, 

i = 1 , 2 , 3 . (41) 

sing electro-neutral condition 

∑ 3 
i =1 z i c i (1) = 0 , we can rewrite

39) as 

C m 

V 

b 
m 

= 

∫ 1 

b 

3 ∑ 

i =1 

z i (c i − c i (1)) dx = 

3 ∑ 

i =1 

z i Q b + ,i . (42)

imilarly, if we apply the condition (36) in the bulk of intracellular

egion, e.g., x = 0 . 5 , we obtain 

 m 

V 

b 
m 

= 

∫ b 

0 . 5 

3 ∑ 

i =1 

z i (c i − c i (0 . 5)) dx = 

3 ∑ 

i =1 

z i Q b −,i . (43)

qs. (42) and (43) indicate that the membrane at x = b can be

odelled as a capacitor, whose effective char ge on each side is the

xcessive charge mainly stored in BL near membrane. 

Following a similar procedure or using the analysis in

ection 4.1 , we obtain the dynamic equation for V a m 

 m 

∂ t V 

a 
m 

= 

3 ∑ 

i =1 

z i J 
a 
i = −

(
I VG 
1 + I R 1 + I VG 

2 + I R 2 + I Kir 
2 + I VG 

3 

)
. (44)

hese two Eqs. (40) and (44) for the two membrane potentials

ave similar forms as the membrane model ( Xu and Lavan, 2008 ),

xcept that V a m 

and V b m 

and the variables appearing in the for-

ulas of currents are interpreted as bulk quantities in the mem-

rane model. We take (40) as an example to illustrate that it

s a leading order approximation. It is clear from estimates in

ong et al. (2018b) and numerical simulation in the next section

hat the variation of ψ in BL is small compared with V b m 

, and we

ave 

 

b 
L − ψ 

b 
−, ψ 

b 
R − ψ 

b 
+ ∼ O (ε∂ x ψ(b)) ∼ O 

(
ε2 

m 

εh m 

)
∼ 10 

−2 , (45)
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Fig. 2. The function f ( ̃ V b m ) with specific formulas of currents in Section 5.1 . 
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where the first ∼ is based on the asymptotic analysis ( Song et al.,

2018b ) and the second ∼ is from interface condition (18) 2 . Thus,

we can replace V b m 

by the bulk values 

 

b 
m 

= ψ 

b 
− − ψ 

b 
+ ≈ ˜ V 

b 
m 

= ψ 

b 
L − ψ 

b 
R . (46)

Estimates of (45) and (46) are also given in Appendix D in a

slightly different way. Similarly, we replace c b 
i, + , c 

b 
i, − by bulk con-

centrations c b 
i,R 

, c b 
i,L 

as leading-order approximations in the formu-

las of currents, based on continuity of electro-chemical potential

across the BL and similar estimates as in (45) ( Song et al., 2018b ).

Therefore, (40) can be rewritten as 

 m 

d 

dt 
˜ V 

b 
m 

= f ( ̃  V 

b 
m 

) = −˜ I b 2 − ˜ I b 3 − ˜ I pump 
1 

− ˜ I pump 
2 

, (47)

where we have defined from (7), (8) that 

˜ I b 
i 

= I b 
i 
( ̃  V 

b 
m 

, c b 
i,L 

, c b 
i,R 

) , i = 2 , 3 , 

˜ I pump 

k 
= I pump 

k 
( ̃  V 

b 
m 

, c b 1 ,L , c 
b 
1 ,R , c 

b 
2 ,L , c 

b 
2 ,R ) , k = 1 , 2 . 

(48)

Note that we have replaced ∂ t by d 
dt 

to reflect the fact that spatial

variation is removed at the leading order. Similarly, 

 m 

d 

dt 
˜ V 

a 
m 

= −
(

˜ I VG 
1 + ̃

 I R 1 + ̃

 I VG 
2 + ̃

 I R 2 + ̃

 I Kir 
2 + ̃

 I VG 
3 

)
, (49)

where the above ˜ I i ( i = 1 , 2 , 3 ) are defined by replacing V a m 

and c a 
i, ±

on the right-hand side of (3), (4), (6) by the bulk quantities ˜ V a m 

, c a 
i,R 

and c a 
i,L 

. Eqs. (47) and (49) constitute the membrane model (ODE

model) for computing the two membrane potentials. Eq. (49) with

the specific formulas of currents in Section 5.1 is exactly the same

as in Xu and Lavan (2008) , which generates APs. Eq. (47) is not

explicitly given in Xu and Lavan (2008) . 

Next we briefly show that ˜ V b m 

(or approximately V b m 

) does not

vary during the dynamic process, which is believed to be true in

other works ( Gotter et al., 1998; Xu and Lavan, 2008 ). Let ˜ V ∗ be

the local equilibrium of ˜ V b m 

at resting state, then 

˜ V b m 

= 

˜ V ∗ is a stable

equilibrium in general. Locally (47) can be written as 

 m 

d 

dt 
˜ V 

b 
m 

= −C b ( ̃  V 

b 
m 

− ˜ V 

∗) , C b > 0 , (50)

where C m 

≈ 4 . 5 × 10 −8 . With specific formulas in Section 5.1, Fig. 2

shows f ( ̃  V b m 

) in (47) in a proper range for membrane potential ˜ V b m 

.

It can be seen that there is a stable equilibrium near −3 . 2 (or

−83 mV before scale), and we have C b ≈ 0.01. From Section 4.1 , we

showed that ψ is a constant respectively in the bulk of ( a , b ) or ( b ,

1). The constant ψ 

a 
R 

= ψ 

b 
L 

in ( a , b ) is controlled by the dynamics of

innervated membrane, and hence this causes some perturbation in
˜ 
 

b 
m 

= ψ 

b 
L 

− ψ 

b 
R 

. Since ˜ V ∗ is a stable equilibrium, ˜ V b m 

always recov-

ers to ˜ V ∗ after perturbation. This is done by adjusting the constant
 

b 
R 

= ψ(1) in the bulk of ( b , 1), since there is no restriction for

(1). 

In summary, we have shown that ψ is a constant in each bulk

f the three regions, and the three constants are determined by

he two membrane potentials. Using the boundary condition at x =
 , ψ remains as 0 in the region x < a . During an AP at x = a, ˜ V a m

ncreases and ψ will increase in the region a < x < b . Since the non-

nnervated membrane is at equilibrium all the time, i.e., ˜ V b m 

is fixed,

 in the region x > b has to increase accordingly. This explains why

here is a high transcellular potential. 

. Numerical analysis 

In this section, we adopt specific formulas for the membrane

urrents in the model, and then show the numerical results by

olving the dimensionless PNP system in Section 3 . 

.1. Formulas of currents 

In this subsection, we present the formulas of currents in (3),

4), (6) –(8) . The original parameter values in the following formu-

as are given in Appendix B , while the dimensionless formulas and

arameter values are given in Appendix C . 

The currents through voltage-gated channels in (3) are given by

he classical HH model ( Malmivuo and Plonsey, 1995; Hodgkin and

uxley, 1990 ) 

 

VG 
i = G i (V 

a 
m 

− V 

a 
i ) = G i 

(
ψ 

a 
+ − ψ 

a 
− − k B T 

z i e 0 
ln 

c a 
i, −

c a 
i, + 

)
, i = 1 , 2 , 3 , 

(51)

here the Nernst potential V a 
i 

is defined as the last term in the

racket. The conductances G i are given by Xu and Lavan (2008) 

 1 ≡ ḡ Na m 

3 h + ḡ Na,leak , G 2 ≡ ḡ K n 

4 + ḡ K,leak , G 3 ≡ ḡ Cl , (52)

here ḡ Na , ̄g K , ̄g Cl , ̄g Na,leak , ̄g K,leak are constants, and m , h , n are the

ating variables whose dynamics are given in Appendix A . Fol-

owing Xu and Lavan (2008) , we assume that there is no chloride

hannel on innervated membrane and set ḡ Cl = 0 . 

The current from the Kir channel in (4) is given by 

 

Kir 
2 = 

ḡ Kir (V 

a 
m 

− V 

a 
2 ) 

1 + e 
n 1 F 

RT (V 
a 

m −V a 
2 
+ n 2 ) 

, (53)

here ḡ Kir is the maximum conductance of Kir channel, F = e 0 N A 

s Faraday’s constant, R = k B N A is the gas constant, and n 1 and n 2 
re two parameters. 

In Xu and Lavan (2008) , the currents through the receptor in

6) are restricted to the case 

 

R 
1 = I ∗1 , I R 2 = 0 , (54)

here I ∗
1 

is given by Sheridan and Lester (1977) ; Magleby and

tevens (1972) ; Xu and Lavan (2008) 

 

∗
1 = 

[ A ] 2 ḡ R e 
−αt 

[ A ] 2 + 2[ A ] k −2 

k +2 
+ 

k −1 k −2 

k +1 k +2 

(V 

a 
m 

− V 0 ) , 2 k −2 = α = α0 e 
V a m 
V 1 , (55)

here ḡ R is the conductance for the open receptors, and α0 , V 0 , V 1 

re parameters determined from experimental data. 

At the non-innervated membrane x = b, Goldman-Hodgkin-Katz

GHK) model ( Hille et al., 2001; Xu and Lavan, 2008 ) is used for

he currents in (7) 

 

b 
i = P i z 

2 
i 

V 

b 
m 

F 2 
(

c b 
i, − − c b 

i, + e 
− z i F 

RT V 
b 

m 

)
RT (1 − e −

z i F 

RT V 
b 

m ) 
, i = 2 , 3 , (56)

here P i is the permeability. Other choices could be the HH type

urrents as in (51) with fixed conductances. 
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Fig. 3. Numerical results to generate the resting state in step (I); (a) the dynamics of membrane potential V m (b) Distribution of electric potential at resting state. 

Fig. 4. The variation and dynamics of electric potential, (a) position and time dependence, and (b) dynamics at four spatial locations, i.e., both sides of the two membranes. 
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The pumps ( Goldshlegger et al., 1987; Novotny and Jakobsson,

996 ) in both membranes are not needed since it has little impact

n fast AP dynamics. It restores the equilibrium Na + and K 

+ con-

entrations over a much longer timeframe. Thus we set in (8) that

 

pump 
i 

= 0 , i = 1 , 2 , 3 . (57)

.2. Numerical results 

The computation is carried out in two steps: (I) the resting

tate is generated when the receptor is closed; and (II) the dy-

amics of the electric potential is simulated when the receptor is

ctivated. 

In step (I), the resting state is generated by setting I R 1 = I R 2 = 0 in

6) . Fig. 3 (a) shows the dynamics of membrane potentials V a m 

and

 

b 
m 

. At the innervated membrane x = a, the flux of potassium ion is

egative, i.e. from IC region to EC region, while the flux of sodium

on is positive. At the non-innervated membrane x = b, fluxes of

otassium and chloride ions are from IC region to EC region. After

ertain time period, the net current across each membrane tends

o 0. The resting potentials are calculated as 

 

a 
m 

| t=5 ×10 −4 = ψ 

a 
+ − ψ 

a 
− = −3 . 2443 , 

 

b 
m 

| t=5 ×10 −4 = ψ 

b 
− − ψ 

b 
+ = −3 . 2414 , 

(58) 

nd the original values before scaling is about -84 mV (similar to

he value in Xu and Lavan (2008) ). Fig. 3 (b) shows the distribu-

ions of electric potential ψ at the resting state. It indicates that

he electric potential ψ is almost a constant at each of the three

ulk regions, and there are thin BLs on both sides of the mem-

ranes. The variation of ψ in the BLs is consistent with the esti-

ates in (45) . 
In step (II), the ACh receptors are activated, inducing extra flux

f sodium ion, given by (54), (55) . The resting state in Fig. 3 (b) is

sed as the initial state. Fig. 4 shows the dynamics of electric po-

ential up to full depolarization. Fig. 4 (a) is the position and time

ependence of ψ , and Fig. 4 (b) shows dynamics at four spatial

ocations, i.e., both sides of the two membranes at x = a and b .

ig. 4 (b) shows that the electric potential on the left side of the in-

ervated membrane is almost a constant 0, determined by the left

oundary condition. The electric potentials on the right-side of the

nnervated membrane and on the left-side of the non-innervated

embrane are almost identical, indicating that ψ is almost a con-

tant in the bulk of the IC region. 

Fig. 4 (a) can be further illustrated by snapshots at various

imes as depicted in Fig. 5 . Note that, unlike the subfigures in

ig. 3 (b), BLs are hardly observable in the scale of Fig. 5 . From

igs. 3 (b) to 5 (a), electric potential ψ in the IC space increases

apidly since receptors are open and more sodium ions flow

hrough the innervated membrane from the EC space into the

C space. From Fig. 5 (a) to (b), electric potentials adjust slightly,

ue to the synergy of various fluxes and conductances. This cor-

esponds to small variations by the curves for t ∈ [0 . 2 , 1 . 2] ×
0 −5 in Fig. 4 (b). The electric potentials in ( a , b ) and ( b , 1) in-

rease significantly again from From Fig. 5 (b) to (d). Finally, the

embrane potential at the innervated membrane reaches up to

.7 (70 mV in physical units) and transcellular potential reaches

bout 6.0 (155 mV), while the membrane potential at the non-

nnervated membrane remains at its resting equilibrium all the

ime. Figs. 4 and 5 confirm our asymptotic analysis that ψ remains

s piecewise constants in the bulk regions, and the estimated time

cale in (22) is also confirmed. This property of constant electric

otential in the bulk of IC region provides the justification that the
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Fig. 5. The electric potential at (a) t = 10 −6 , (b) t = 1 . 2 × 10 −5 , (c) t = 1 . 55 × 10 −5 , (d) t = 4 . 0 × 10 −5 , where EC and IC spaces stand for extracellular and intracellular spaces, 

respectively. 

Fig. 6. The variation and dynamics of electric potential for relatively long time, (a) the position and time dependence, and (b) the dynamics of two membrane potentials. 

Fig. 7. The dynamics of all nonzero membrane currents in (17) and the total current: (a) at the innervated membrane x = a, (b) at the non-innervated membranes x = b. 
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Fig. 8. Time history of excessive charges at both sides of innervated membrane: (a) for Na + , (b) for K + , (c) the net excessive charge. 

Fig. 9. The dynamics and variation of concentrations: sodium ion in (a) the left extracellular space, (c) intracellular space, and (e) right extracellular space; and potassium 

ion in (b) left extracellular space (d) intracellular space and (f) right extracellular space. 
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Fig. 10. The two membrane potentials with the receptor open for both sodium and 

potassium ions. 
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transcellular potential, ψ(1) − ψ(0) , can be obtained by the su-

perposition of the two membrane potentials, V a m 

− V b m 

. 

Fig. 6 shows the dynamics for the entire course of the AP.

Fig. 6 (a) shows the dependence of the electric potential in both

space and time, and Fig. 6 (b) shows the membrane potentials at

x = a and b . The previous Fig. 4 corresponds to the rising phase of

Fig. 6 . It is clear that the membrane potential V a m 

at the innervated

membrane x = a experiences an AP ( Gotter et al., 1998; Xu and La-

van, 2008 ). It starts from resting state −83.8 mV, peaks at about

70 mV, and finally recovers to the resting state. The membrane po-

tential V b m 

at x = b keeps at its resting state all the time. These are

consistent with our asymptotic analysis. 

To examine the roles played by each individual flux, we plot

the all the nonzero fluxes (currents) and total current at the inner-

vated and non-innervated membranes in Fig. 7 (a) and (b). The red

line in Fig. 7 (a) denotes the total current at the innervated mem-

brane, which remains small. Initially, an extra current is induced

by flux of sodium ion through the receptor, when acetylcholine
Fig. 11. The comparison of electric potential and the concentrations Na + , K + and Cl − at t
ACh) is released near the receptors. As a result, voltage-gated Na + 

hannels are activated, and I VG 
1 

increases during the depolarization

hase of the AP. In the meantime, since V a m 

changes rapidly, the

ux in the opposite direction from Kir channels becomes signif-

cant and balances most fluxes from receptor and Na + channels.

ear the peak of the AP, fluxes from Kir channel, Na + channels

nd receptor become much smaller and the current from receptor

s reversed. During the repolarization phase of AP, voltage-gated K 

+ 

hannels open and play a significant role to balance other fluxes.

ubsequently, fluxes from Na + and Kir channels increase again and

alance each other. Finally, all fluxes decay to 0 or negligible values

hen it restores back to the resting state. In Fig. 7 (b), fluxes at the

on-innervated membrane are steady and small, since there are no

eceptors there. This leads to a constant membrane potential V b m 

as

hown in Fig. 6 (b). 

In our analysis, we interpreted the innervated and non-

nnervated membranes as capacitors. Now we verify this approx-

mation and compute excessive charge at each side of the mem-

ranes. As in (41) , we define excessive charge for each ion species

t two sides of the innervated membrane as 

Q a −,i = 

∫ a 

0 

c i (x ) − c i (0) dx, Q a + ,i = 

∫ 0 . 5 

a 

c i (x ) − c i (0 . 5) dx, 

i = 1 , 2 , 3 . (59)

he total excessive charges, namely the net charges, at the left

nd right sides of the innervated membrane are computed by
 3 
i =1 z i Q a −,i and 

∑ 3 
i =1 z i Q a + ,i . Similar quantities can be computed at

he non-innervated membrane. Fig. 8 (a) and (b) present the time

istory of excessive charges of K 

+ and Na + at both sides of in-

ervated membrane during an AP. Fig. 8 (c) shows the net charge

t both sides of the innervated membrane, which indicates that

he net charge is much smaller than excessive charges of Na + 

nd K 

+ . These two net charges have the same magnitude but
 = 5 × 10 −5 for the two cases, with or without potassium flux through the receptor. 
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Fig. 12. The dynamics of two membrane potentials with ḡ R = 800C / ( V · s · m 

2 ) , 

V 1 = 86 mV and α0 = 1 . 23 ms −1 . 
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pposite signs, which implies that the membrane does act as a ca-

acitor during AP. The profiles are similar to that of V a m 

in Fig. 6 (b),

s they can be approximated by ±C m 

V a m 

(like equations (42), (43) ).

his agrees with our analysis and the results using the membrane

odel ( Xu and Lavan, 2008 ). 

Fig. 9 shows the dynamics and variation of concentrations of

odium and potassium ions in three regions (Chloride ion is omit-

ed for brevity). In the bulk, it is clear that the concentrations re-

ain almost constants and vary only near the two membranes. The

ariation near the membrane is also at a small scale, which justi-

es the use of bulk value as leading approximation in the previ-

us analysis. It further implies that AP is indeed caused by a small

mount of ions’ movement across the membrane, compared with

 much larger quantity in the bulk regions. Near the innervated

embrane x = a, ion concentrations adjust during AP, while at the

on-innervated membrane x = b ion concentrations do not vary,

hich is consistent with its membrane potential V b m 

being steady

t resting state. 

So far, we have considered the case that only sodium ions go

hrough ACh receptors, but in general ACh receptors are not selec-

ive and allow currents of many cations ( Adams, 1981 ). In the fol-

owing, we consider the case that the receptors are open for both

a + and K 

+ . We set 

 

R 
1 = 2 I ∗1 , I R 2 = −I ∗1 , (60)

o that the total current across the receptors is still I ∗1 , given by

55) . Fig. 10 presents the profiles of two membrane potentials in

his case, which are almost identical to Fig. 6 (b). At t = 5 × 10 −5 ,

ig. 11 compares the two cases for the spatial variation of the elec-

ric potential and the three ion concentrations Na + , K 

+ and Cl −.

n each subfigure, the blue and red lines represent the cases with

nd without potassium flux through the receptors. Fig. 11 (a) shows

hat the difference of electric potentials is also negligible (about

 × 10 −4 ) for both cases. Since the receptors are on the innervated

embrane, there is a small difference (similar scale 10 −4 ) in con-

entrations near the innervated membrane. Therefore, the interpre-

ation of currents from receptors has little impact on the spatial

ariation and dynamical process. 

Before we end this section, we would like to discuss a com-

on issue in modeling a complex system with parameter uncer-

ainties. Most parameters in Appendix B are either constants or de-

ermined by experiments and considered to be reliable. However,

his is not the case for some parameters such as ḡ R , which is re-

orted to be in the range [70 0, 20 0 0]C/(V · s · m 

2 ). The lower bound

00 is used in our computations. In addition, the values of param-

ters V 1 and α0 could vary with different tem peratures. To inves-

igate the effect of these parameters, we performed computations

y using the following values ḡ R = 800C / ( V · s · m 

2 ) , V 1 = 86 mV

nd α = 1 . 23 ms −1 ( Sheridan and Lester, 1977 ). Fig. 12 shows the
0 
ynamics of the membrane potentials. It can be seen that there is

epeated AP on the left innervated membrane, instead of just one

P in the previous computation. We speculate that this could be

he case when electrocytes operate under different temperatures.

ut a more careful investigation is needed before we can reach

ny concrete conclusions. Mathematically, these parameters affect

he current strength through ACh receptors in (6) , which increases

ith a larger ḡ R and decays more slowly with a smaller α. When

his receptor initiated current is sufficiently strong when the mem-

rane repolarizes after generating its first AP, a new AP could be

riggered. 

. Conclusions 

In this paper, we have formulated a mathematical model to

tudy the mechanism of electric potential generation in electric

els. Our PNP model explores AP generation at the innervated

embrane through the activation of the ACh receptors and Na + 

nd K 

+ channels, and shows that electric potential holds almost

niform across the entire EC and IC bulk regions. In addition, we

how that the dynamics of membrane potentials can be approx-

mated by interpreting membranes as capacitors, and the non-

nnervated membrane is kept at resting equilibrium state all the

ime. Our asymptotic analysis justifies the superposition of inner-

ated and non-innervated membrane potentials to constitute the

ranscellular potential observed in the previous membrane model

 Xu and Lavan, 2008 ) and our numerical solution of the PNP sys-

em confirms that. Finally, we note that we have considered the

ssue of electric potential generation of electrocyte in an open cir-

uit. In this case, we have showed that there is almost no current

n the EC and IC spaces, and the transcellular potential is gener-

ted by two membranes acting as capacitors. During discharge in

 closed circuit, there will be an external current and other inter-

sting interactions but the same framework should be applicable.

he project for the case of a closed circuit is ongoing, and we plan

o investigate the combined effect of electric generation and dis-

harge. 
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ppendix A. The dynamic system of m , n , h 

The dynamic system of m , n , h is 

dn 

dt 
= αn (1 − n ) − βn n, 

dm 

dt 
= αm 

(1 − m ) − βm 

m, 

dh 

dt 
= αh (1 − h ) − βh h. (A.1) 

he coefficients depend on V a m 

and are given by 

αn = 2 . 38 × 10 3 · e 
V a m +0 . 0164 

0 . 0472 , βn = 1 . 71 × 10 3 · e −
V a m +0 . 0164 

0 . 0184 

m 

= 2 . 64 × 10 4 · e 
V a m +0 . 0618 

0 . 0295 , βm 

= 2 . 59 × 10 4 · e −
V a m +0 . 0618 

0 . 0242 

αh = 1 . 08 × 10 3 · e −
V a m +0 . 0545 

0 . 00784 , βh = 1 . 49 × 10 3 / (0 . 0745 + e −
V a m +0 . 0545 

0 . 0129 ) , 

(A.2) 

here αi and β i ( i = n, m, h ) are dimensionless parameters scaled

y 1/(16.9 s) (where 16.9 s comes from the diffusion time scale in

his paper), V a m 

are values in unit Volt. With V a m 

= −0 . 084 V, we

btain the steady state solution 

 0 = 0 . 008458 , m 0 = 0 . 1622 , h 0 = 0 . 9967 , (A.3)
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which are used as initial values of the time-dependent problem to

simulate action potential. 

Appendix B. The parameters and data 

The data are mainly from Hodgkin and Huxley (1990) ;

Pods et al. (2013) ; Sheridan and Lester (1977) ; Magleby and

Stevens (1972) and the book in Liu and Eisenberg (2014) . The tem-

perature in Xu and Lavan (2008) is set to be 27 ◦C so we get

T = 300 . 15 K. The other constants are 

k B = 1 . 38 × 10 

−23 J/K N A = 6 . 022 × 10 

23 / mol , 

e 0 = 1 . 602 × 10 

−19 C ε0 = 8 . 854 × 10 

−12 C / ( V · m ) , 
F = e 0 N A R = k B N A . 

The typical bulk concentrations (see Gotter et al. (1998) ) for Na + ,
K 

+ 
, Cl − are 

c 1 , Na + c 2 , K 
+ c 3 , Cl 

−
q 

Extracellular 160 mM 2 . 5 mM 162 . 5 mM 0 

Intracellular 8 . 928 mM 72 . 048 mM 9 . 328 mM −71 . 648 mM 

which are used as initial conditions (scaled by c 0 below). Some

typical values are 

εr = 80 , εm 

r = 2 , c 0 = 160 mM = 160 mol / m 

3 , 

h m 

= 5 nm , L = 130 μm , a = 25 μm , b = 105 μm , 

D 0 = 10 −9 m 

2 / s , D 1 = 1 . 33 D 0 , D 2 = 1 . 96 D 0 , D 3 = 2 . 03 D 0 . 

(B.1)

The conductances and parameters in flux formulas are given by

Xu and Lavan (2008) ; Magleby and Stevens (1972) 

ḡ Na = 157 mS / cm 

2 = 1570 C / ( V · s · m 

2 ) , 

ḡ K = 320 C / ( V · s · m 

2 ) , ḡ Cl = 0 C / ( V · s · m 

2 ) , 

ḡ Na,leak = 0 . 2761 C / ( V · s · m 

2 ) ḡ K,leak = 31 . 5390 C / ( V · s · m 

2 ) , 

ḡ Kir = 591 C / ( V · s · m 

2 ) , ḡ R = 700 C / ( V · s · m 

2 ) , 

P 1 = 0 , P 2 = 1 . 12 × 10 −6 m / s , P 3 = 7 . 63 × 10 −8 m / s , 

n 1 = 1 . 45 , n 2 = −0 . 0630 V , [ A ] = 0 . 1 mol / m 

3 , 

 0 = 0 , V 1 = 125 . 79 mV , α0 = 1 . 67 ms −1 = 1 . 67 × 10 3 s −1 , 

k +2 = 7 × 10 3 m 

3 / ( mol · s ) , k −1 /k +1 = 2 × 10 −2 mol / m 

3 . 

(B.2)

From the above data, we get the scales 

k B T 
e 0 

≈ 25 . 9 mV , L 2 

D 0 
= 16 . 9 s , λD = 1 . 0893 × 10 

−9 m , 

G 0 = 4592 . 2 C / ( V · s · m 

2 ) , P 0 = 7 . 69 × 10 

−6 m/s , 

I 0 = 118 . 74 C/(s ·m 

2 ) . 

(B.3)

Appendix C. The dimensionless parameters and formulas 

The dimensionless parameters are 

ε = 8 . 38 × 10 

−6 , εm 

= 1 . 32 × 10 

−6 , 

h m 

= 3 . 85 × 10 

−5 , a = 0 . 1923 , b = 0 . 8077 , 

D 1 = 1 . 33 , D 2 = 1 . 96 , D 3 = 2 . 03 , q = −0 . 4478 , 

α0 = 2 . 82 × 10 

4 , n 1 = 1 . 45 , n 2 = −2 . 4366 , 

ḡ Na = 0 . 3419 , ḡ K = 0 . 06968 , ḡ Cl = 2 . 18 × 10 

−4 , 

ḡ Na,leak = 6 . 0123 × 10 

−5 ḡ K,leak = 6 . 8679 × 10 

−3 , 

ḡ Kir = 0 . 1287 , ḡ R = 0 . 1524 , V 0 = 0 , V 1 = 4 . 86 , 

[ A ] = 6 . 25 ×10 

−4 , k +2 =1 . 89 ×10 

7 , k −1 /k +1 =1 . 25 ×10 

−4 , 

P 1 = 0 , P 2 = 0 . 1455 , P 3 = 0 . 009914 . 

(C.1)

The dimensionless formulas of currents are 

I VG 
i = G i 

(
V 

a 
m 

− 1 

z i 
ln 

c a 
i, −

c a 
i, + 

)
, 

I Kir 
2 = 

ḡ Kir (V 

a 
m 

− V 

a 
2 ) 

1 + e n 1 (V 
a 

m −V a 
2 
+ n 2 ) , V 

a 
m 

= ψ 

a 
+ − ψ 

a 
−, V 

a 
2 = 

1 

z 2 
ln 

c a 2 , −
c a 

2 , + 
, 
I b i = P i z 
2 
i 

V 

b 
m 

(
c b 

i, − − c b 
i, + e 

−z i V 
b 

m 

)
(1 − e −z i V 

b 
m ) 

, (C.2)

nd the form of I ∗
1 

in (55) will not change. 

The functions F iR and F iL in (31) are given by 

F jR = 

√ 

c jR 

c 3 R 

√ 

2 c jR 

(
e (ψ R −ψ 

b 
+ ) / 2 − 1 

)
, j = 1 , 2 , 

 3 R = 

√ 

2 c 3 R 

(
e (ψ 

b 
+ −ψ R ) / 2 − 1 

)
, 

F jL = 

√ 

c jL 

c 3 L 

√ 

2 c jL 

(
e (ψ L −ψ 

b 
−) / 2 − 1 

)
, j = 1 , 2 , 

F 3 L = 

√ 

2 c 3 L 

(
e (ψ 

b 
−−ψ L ) / 2 − 1 

)
, (C.3)

here subscript L and R mean the left and right limits from the

ulk solutions. 

ppendix D. Estimates of (45) and (46) 

As the BL is O ( λD ), by mean value theorem, we have 

 ψ(b + ) − ψ(1) | ∼ O ( λD | ∂ x ψ | (ξ , t) ) ∼ O (λD 
ε2 

m 

ε2 

| V b m | 
h m 

) , ξ ∈ (b, 1) ,

(D.1)

n other words, we get 

| ψ(b + ) − ψ(1) | 
| V 

b 
m 

| ∼ O ( 
ε2 

m 

ε2 

λD 

h m 

) , (D.2)

n the case of c b = 160 mM, h m 

= 5 nm and λD = 1 nm, we obtain

| ψ(b + ) − ψ(1) | 
| V 

b 
m 

| ∼ O ( 
1 

200 

) . (D.3)

imilarly we get 

| ψ(b −) − ψ(0 . 5) | 
| V 

b 
m 

| ∼ O ( 
1 

200 

) . (D.4)

ombining the two, we get 

| ψ(1) − ψ(0 . 5) | 
| V 

b 
m 

| ∼ O ( 
101 

100 

) , (D.5)

nd hence it is approximately well if we replace V b m 

by bulk dif-

erence ψ(1) − ψ(0 . 5) (this is also ˜ V b m 

as ψ is constant in bulk).

imilar arguments apply to V a m 

. 
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