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Abstract

The distribution and accumulation of nanoparticle dosage in a tumor are important in evalu-

ating the effectiveness of cancer treatment. The cell survival rate can quantify the therapeu-

tic effect, and the survival rates after multiple treatments are helpful to evaluate the efficacy

of a chemotherapy plan. We developed a mathematical tumor model based on the govern-

ing equations describing the fluid flow and particle transport to investigate the drug transpor-

tation in a tumor and computed the resulting cumulative concentrations. The cell survival

rate was calculated based on the cumulative concentration. The model was applied to a

subcutaneous tumor with heterogeneous vascular distributions. Various sized dextrans and

doxorubicin were respectively chosen as the nanodrug carrier and the traditional chemo-

therapeutic agent for comparison. The results showed that: 1) the largest nanoparticle drug

in the current simulations yielded the highest cumulative concentration in the well vascular

region, but second lowest in the surrounding normal tissues, which implies it has the best

therapeutic effect to tumor and at the same time little harmful to normal tissue; 2) on the con-

trary, molecular chemotherapeutic agent produced the second lowest cumulative concen-

tration in the well vascular tumor region, but highest in the surrounding normal tissue; 3) all

drugs have very small cumulative concentrations in the tumor necrotic region, where drug

transport is solely through diffusion. This might mean that it is hard to kill tumor stem cells

hiding in it. The current model indicated that the effectiveness of the anti-tumor drug delivery

was determined by the interplay of the vascular density and nanoparticle size, which gov-

erns the drug transport properties. The use of nanoparticles as anti-tumor drug carriers is

generally a better choice than molecular chemotherapeutic agent because of its high treat-

ment efficiency on tumor cells and less damage to normal tissues.

Introduction

Nanodrug carriers are advantageous over conventional molecular medicine in cancer therapy

due to their higher tumor selectivity [1]. The therapeutic efficiency of anti-cancer drugs is

highly correlated with their spatial and temporal concentration distributions in the tumor,
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which are governed by the tumor environment [2] and the physicochemical properties of a

drug. The uniformity of the drug concentration distribution affects the therapeutic effect on

the entire tumor, and the cumulative concentration dominates the survival rate of cells. There-

fore, the aim of drug delivery is to achieve a high and uniform distribution of the cumulative

drug concentration in a tumor. Since drug delivery relies on the vascular system, an abnormal

vasculature affects the deposition of drug molecules in a tumor through blood vessels. The

presence of the high interstitial pressure in the tumor also hinders the drug delivery [3, 4]. The

drug molecules are extravasated from blood vessels, and their transport in the interstitium is

driven by diffusion and convection effects. Diffusion effect is caused by the concentration dif-

ference in the interstitium, while the convection effect is driven by the interstitial pressure

gradient.

The concentration difference in the interstitium is mainly the result of the heterogeneous

vascular distribution in the tumor [5]. Tumor blood vessels are highly irregular in their struc-

ture compared with those in normal tissues. Unlike normal vessels, tumor vessels are dilated

and tortuous, and their vascular walls are leaky and more permeable than normal vessels [6–

8]. Moreover, the vascular distribution of tumor is highly heterogeneous. Tumor angiogenesis

starts from the outer region and then spreads into the inner region. The proliferation of tumor

cells results in a well-vascularized region in the periphery and a less vascularized region near

the tumor center, in which a necrotic core may form, as illustrated by Fig 1. The heterogeneity

Fig 1. The cross-section illustration of a tumor with a necrotic core.

https://doi.org/10.1371/journal.pone.0189802.g001
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of the blood vessel network leads to a non-uniformly cumulative concentration distribution of

the drug within the tumor. In the tumor, the interstitial pressure is high and the interstitial

pressure gradient is near zero due to a less functional lymphatic network. The function of a

lymphatic network is to drain excess fluid from tissues to maintain the interstitial fluid balance

and to prevent the occurrence of high pressure. However, functional lymphatic vessels can

only be found in the tumor periphery, and the lymphatic vessels together with blood vessels at

the center of a tumor are compressed by cancer cells and therefore often collapsed [9, 10]. As

mentioned in the previous paragraph, the tumor vessel walls are leaky and thus fluid can easily

leak from blood vessels to tumor tissues. The less functional lymphatic system in a tumor gives

rise to the insufficient drainage of fluid, thereby leading to the fluid accumulation in the inter-

stitium and a high interstitial pressure around the center of tumor tissues. On the other hand,

the vasculature at the outer region of a tumor can drain the excessive fluid; therefore, the inter-

stitial pressure drops quickly [9, 10]. The pressure gradient at the periphery region induces an

outward convection, which pushes drug particles away from the tumor.

The tumor cell survival rate can serve as an indicator to evaluate the therapeutic effect and

to estimate the probability of tumor recurrence. Putten and Lelieveld reported that there

existed a log-linear relationship between the tumor survival rate and the extracellular drug

concentration [11]. However, El-Kareh and Secomb also argued that the cell survival rate was

more closely related to the intracellular drug concentration than the extracellular concentra-

tion [12]. Nevertheless, both works suggested that the tumor survival rate was proportional to

the drug concentration whether it is intracellular or extracellular. High drug concentrations

generally lead to a lower survival rate as more cells are killed by the drug. In this work, we

developed a mathematical tumor model starting from the governing equation describing inter-

stitial pressure distribution introduced by Soltani and Chen [13], and in addition we added the

drug transport model to depict the temporal evolution and spatial distribution of drug concen-

tration. The model was applied here to study a subcutaneous tumor with heterogeneous vascu-

lar networks considering the physiological characteristics of a tumor. Both nanoparticle

carriers and a molecular therapeutic agent were investigated. Their difference in terms of the

therapeutic effect and damage to the surrounding normal tissues were compared. The objec-

tive is to investigate the influence of tumor characteristics and drug properties on the drug

AUC (area under the curve) distributions in the entire tumor by numerical simulation of the

proposed mathematical model. In addition, the cell survival rate was estimated to quantify the

therapeutic effect.

Since this work is primarily focused on drug delivery, we did not study the detailed tumor

growth model, but described it by a simplified equation (Eq (23)). Because little is known

about the regrowth of human tumors after chemotherapy [14], several methods have been pro-

posed to model the kinetics of tumor repopulation [15–19]. One of the most popular models is

to assume an exponential growth of tumor cells while accounting for a decreased growth rate

as the volume of tumor increases [17]. The tumor growth is considered to follow the Gompertz

model, which has become a widely accepted growth process for tumor growth in particular

[18, 20, 21]. Consequently, we employed the Gompertz model to simulate the tumor repopula-

tion after chemotherapy.

Materials and methods

The anti-cancer drug concentration in a tumor is affected by the vascular density, the size of a

tumor, and characteristics of a drug such as molecular weight, diffusivity, vascular permeabil-

ity, uptake rate by tumor cells, and the plasma half-life. Doxorubicin and various sized dex-

trans were considered and they were assumed to be well circulated in the body. The drug
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concentration in the plasma will gradually diminish due to the drainage by the lymphatic sys-

tem and tissue absorption, as well as the clearance by the body.

Geometric configuration

In our model, tumors were assumed to be spherical and symmetrical. Unlike previous studies

in Baxter and Jain [22], the vascular distribution of the tumor was modeled to be spatially het-

erogeneous and the vascular system comprised arterial capillaries and lymphatic vessels.

The value of the current one-dimensional (1D) model relies on its consistent and detailed

governing equations for drug transport. In spite of simplification in geometry compared with

two, three-dimensional (2D/3D) models [23–25], a well-constructed 1D model still can

explore important physical mechanisms of drug transportation in tumors, and offer significant

tumor treatment advices. A good 3D model sure can do better in prediction, but it takes long

computing time and huge amount of resources to run a case, as compared to 1D models. Espe-

cially, numerous numerical simulations are required for testing and fitting the model parame-

ters and analyzing their sensitivity afterwards, which will be an exhaustive task for 3D models,

but they are much easier to be implemented in 1D models. 1D models do have their limitations

compared with 2D/3D models. Usually a good tumor mathematical model is hierarchical with

dimensions, and 1D model can provide a good test of mathematical model and identify impor-

tant parameters efficiently before extending to 2D/3D.

Both an isolated and a subcutaneous tumors can be investigated by this model. The subcu-

taneous tumor is surrounded by normal tissues while an isolated tumor is not. A tumor region

can be divided into a vascularized and necrotic regions. The vascularized region is mostly in

the peripheral region of a tumor while the necrotic region comprises the tumor core. Though

the proposed model is versatile, only the case of a subcutaneous tumor is presented in the cur-

rent work.

One of the key factors needs to be considered in tumor modeling is the vasculature in

tumor. The vasculature of tumors, featuring heterogeneous distribution of vessel sizes and

shapes in 3D computations, is simplified here by the vascular density distribution S/V, i.e., the

surface area of blood vessel (S) per unit volume of tumor (V). The vascular density is assumed

to be zero in the necrotic core and then increase radially from the necrotic core boundary,

reaching highest at the tumor boundary since the vascularized region is mostly in the periph-

eral region. A typical vascular density distribution in a tumor with a necrotic core is illustrated

in Fig 2 in which the radius of the necrotic core is set to Rn = 0.4R [8], where Rn and R denote

the radius of the necrotic core and the tumor, respectively. For normal tissues, vascular density

distribution was assumed to be homogeneous and therefore a constant value for S/V, since the

vasculature in normal tissues is generally well structured. As vasculature consists of arterial

and lymphatic(venous) capillaries, both the arterial and lymphatic vascular density distribu-

tions of the tumor, S/V and SL/V, are assumed to be zero in necrotic core and otherwise a sine

function here, as shown in Fig 2. Venous vessels have similar functions as lymphatic vessels;

therefore, the presence of venous vessels will be omitted in the paragraphs that follow. A major

difference between the current work and Baxter and Jain [22] is that they considered S/V dis-

tribution to be uniform in both tumor and normal tissues under different constant values, and

their vasculature only consisted of arterial capillaries without considering the drainage by

venous/lymphatic capillaries.

Interstitial pressure

To reach targeted tumor cells, systemically delivered drug needs to first extravasate from blood

vessels, passes through the extracellular matrix, and finally penetrates into intracellular sites.

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature
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The extravascular transport of drug carriers relies on convection and diffusion, which are

determined by the velocity of the interstitial fluid and the drug concentration distribution. The

fluid velocity is proportional to the interstitial pressure gradient as described by Darcy’s law,

~u ¼ � krPi; ð1Þ

where k (cm2/mmHg-s) is the hydraulic conductivity of the interstitium and Pi (mmHg) is

the interstitial pressure. In the biological tissues with the fluid source and fluid sink in the

medium, the continuity equation for the steady-state incompressible flow should be modified

asr �~u ¼ �B þ �L, where ϕB and ϕL (s-1) are the fluid source from blood vessels and the sink

by lymphatic drainage, respectively. The fluid source term denotes the flow flux out of the vas-

cular wall per unit volume, and is governed by Starling’s law as follows:

�B ¼
LpS
V

PB � Pi � ssðpB � piÞ½ �; ð2Þ

where ϕB is the volumetric flow rate out of blood vessels per unit volume of the tumor, Lp is the

hydraulic conductivity of the vascular wall (cm/mmHg-s); the vascular density S/V is the

blood vessel surface area per unit volume of the tumor (cm-1); σs is the average osmotic reflec-

tion coefficient; PB and Pi are pressure in blood vessels and interstitium (mmHg); πB and πi are

the osmotic pressure of the plasma and interstitial fluid (mmHg).

Fig 2. A sine function was used to model the tumor vascular distribution. Vascular density distribution in

a tumor with a necrotic core. The sine function exists only outside the necrotic region and is highest at the

tumor boundary. Vascular density is zero throughout the necrotic core.

https://doi.org/10.1371/journal.pone.0189802.g002
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The lymphatic drainage term is described similar to blood vessel, but without osmotic pres-

sure difference:

�L ¼
LpLSL

V
ðPL � PiÞ; ð3Þ

where −ϕL is the volumetric flow rate into lymphatic vessels per unit volume of the tumor, LpL

is the hydraulic conductivity of lymphatic wall (cm/mmHg-s), the lymphatic vascular density

SL/V is the lymphatic vessel surface area per unit volume of tumor (cm-1), and PL is the pres-

sure in lymphatic vessels (mmHg).

Combining Darcy’s Law and the continuity equation with the substitution of ϕB and ϕL can

result in

� kr2Pi ¼
LpS
V
½PB � Pi � ssðpB � piÞ� �

LpLSL

V
ðPi � PLÞ: ð4Þ

Eq (4) can be written as [22]

r2Pi ¼
a2

R2
ðPi � PssÞ; ð5Þ

where

a ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLpSþ LpLSLÞ=kV

q
; ð6Þ

Pss ¼ ðLpS=VPe þ LpLSL=VPLÞ=ðLpS=V þ LpLSL=VÞ; ð7Þ

and R is the tumor radius. The dimensionless parameter αmeasures the ratio of the vascular

conductance to the interstitial conductance. Pss is the steady-state pressure, a weighted aver-

age of Pe and PL at which the flow rate outflux from blood vessels to the interstitium equals

the influx from interstitium into lymphatic vessels. The effective pressure is defined as

Pe = PB − σs(πB − πi). Note that it seems Pss in the tumor will be a function of r, since S/V and

SL/V are generally functions of r, as depicted in Fig 2. However, with S/V and SL/V both

being zero in the necrotic core and having sine distribution in other region of tumor, Pss will

be reduced to a piecewise constant distribution in tumor. Together with S/V and SL/V being

constants in normal tissues, Pss can be more specifically expressed as,

Pss ¼

Pss1 ¼ 0; 0 � r � Rn;

Pss2 ¼
LpðS=VÞmaxPe þ LpLðSL=VÞmaxPL

LpðS=VÞmax þ LpLðSL=VÞmax

; Rn � r � R

Pss3 ¼
LpðS=VÞnormalPe þ LpLðSL=VÞnormalPL

LpðS=VÞnormal þ LpLðSL=VÞnormal

; R < r:

8
>>>>>>>><

>>>>>>>>:

ð8Þ

Because of symmetry, a pole condition with the pressure gradient (hence the interstitial fluid

flow velocity) being zero is implemented at the center of tumor:

@Pi

@r
¼ 0 at r ¼ 0: ð9Þ

For a subcutaneous tumor, the boundary conditions at the tumor-normal tissue interface,

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0189802


based on the continuity of pressure and velocity, are as follows,

� kt
dPi

dr

�
�
�
�

r¼R�
¼ � kn

dPi

dr

�
�
�
�

r¼Rþ
; ð10Þ

and

Pijr¼R� ¼ Pijr¼Rþ ; ð11Þ

where kt and kn are the hydraulic conductivity of the interstitium in tumor and normal tis-

sues. Another requested boundary condition for pressure in normal tissue is that

Pi ! Pss3; r !1; ð12Þ

meaning the interstitial pressure would approach its Pss in normal tissue when far from the

tumor edge.

All the equations above describe the hydrodynamics of interstitial fluid in a subcutaneous

tumor. Eq (5) will be solved to obtain the interstitial pressure distribution Pi. After that, the

interstitial fluid flow velocity~ui, flow source ϕB, and flow sink ϕL would then be computed,

which will be used in the drug transportation model described below. A typical Pi and Pss dis-

tributions in a subcutaneous tumor would look like Fig 3A while the accompanied~ui, and ϕB,

ϕL are shown in Fig 3B and 3C, respectively. The figure shows that the interstitial pressure Pi

remains constant with the value being tumor’s Pss2 within most of the tumor, and has a steep

descent across the interface of tumor and normal tissues, and then decays to another constant

value of Pss in normal tissues. This causes large outward interstitial fluid flow around the inter-

face, as shown in Fig 3B, and the accompanied drug convection would tend to push drug away

from tumor and towards normal tissues. It might degrade the therapeutic effect and be more

harmful to normal tissues at the same time. One might wonder why most part of the tumor,

especially in the non-vascular necrotic core, experiences high interstitial pressure Pss2. This is

understandable that the fluid inside the necrotic core is trapped there and is forced to have the

same pressure as Pss2. This is mainly because all the vascularized region is mostly in the periph-

ery of tumor and this pressure source forms a large back pressure at the core of tumor due to

lack of lymphatic vessels to release the pressure.

Fig 3. Hydrodynamic distributions based on the S/V and SL/V distributions in Fig 2A and parameters listed in Table 1. Distributions

of A: Pi, B: ui and C: ϕB (according to Eq (2)), ϕL (according to Eq (3)), and their sum in a 2-cm subcutaneous (Rn = 0.4R) tumor.

https://doi.org/10.1371/journal.pone.0189802.g003
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Because S/V and SL/V in tumor tissues share the same shape of sine distribution here, Pss

yields a piecewise constant distribution, as shown in Eq (8). Under this circumstance, the

effects of radial distributions of S/V and SL/V on the interstitial pressure happen to be exactly

the same as S/V and SL/V specified to be constant distributions throughout the tumor like in

[13]. Although having the same interstitial pressure distribution, hence the same interstitial

fluid velocity distribution, these two different distributions of S/V and SL/V in [13] and the cur-

rent model still will have different influence on drug transport through Eqs (14) and (15).

Drug transport

The flux of drug in the interstitium can be described as ~N ¼ � DrCi þ~uCi, where Ci is the

interstitial drug concentration, D is the diffusion coefficient (cm2/sec), and −DrCi and~uCi

denote the diffusion and convection terms, respectively. Diffusion is driven by the concentra-

tion gradient and convection is governed by the fluid velocity. Besides these two processes, the

drug source from blood vessels, drug drainage by lymphatic vessels and the decay of drug con-

centration in the interstitium due to uptake of drug by tumor and normal cells immersed in

interstitium are also taken into consideration. As a result, the drug delivery equation is

expressed as

@Ci=@t þr � ~N ¼ φSB þ φSL � φR; ð13Þ

where φR = Rd Ci represents the drug uptake with Rd (1/s) denoting the uptake rate or sink

coefficient; φSB (mole/cm3-s) and φSL(mole/cm3-s) are respectively the solute effluxes from

blood vessels and lymphatic vessels per unit volume, which are described by Kedem-Katch-

alsky equation as

φSB ¼ �Bð1 � ssÞ
�Cs þ oS=VDC; ð14Þ

where ω is microvascular permeability (cm/s), ΔC = Ch − Cl (mole/cm3) and

�Cs ¼
Ch � Cl

ln ðChC� 1
l Þ
� 1

2
ðCh þ ClÞ are the concentration difference and average of solutions placed

at both sides of the blood vessel membrane, respectively. Here the high concentration Ch

will be the drug concentration in blood vessels CB and the low concentration Cl will be Ci.

Likewise, the rate of solute transport across the lymphatic vessel φSL can also be expressed as

φSL ¼ �Lð1 � sLÞ
�CL þ oLSL=VDCL; ð15Þ

where ωL is permeability for lymphatic vessels (cm/s), ΔCL (mole/cm3) and �CL(mole/cm3)

are the concentration difference and average of solutions placed at both sides of the lym-

phatic vessel membrane, respectively. The expression of ΔCL and �CL are same as ΔC and �Cs

above, but with Cl = Ci and Ch being the drug concentration in lymphatic vessels CL. σL is

the average osmotic reflection coefficient for lymphatic vessels and is set to be the same as σs

here. Similarly, the permeability of lymphatic vessels ωL was set to be the same vascular per-

meability ω in the tissue. As to the boundary/interface conditions for Eq (13), at the center

of the tumor, there is a pole condition

@Ci

@r

�
�
�
�

r¼0

¼ 0: ð16Þ

At the interface of tumor and normal tissue, the concentration and its flux needs to be con-

tinuous over there:

Cijr¼R� ¼ Cijr¼Rþ ð17Þ

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature
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and

� D
@Ci

@r
þ~uiCi

� �

r¼R�
¼ � D

@Ci

@r
þ~uiCi

� �

r¼Rþ
; ð18Þ

where the latter can be further simplified to

� D
@Ci

@r

� �

r¼R�
¼ � D

@Ci

@r

� �

r¼Rþ
; ð19Þ

by Eqs (10) and (17).

As r!1 in normal tissues, the boundary condition over there is a convective boundary

condition, which is simply Eq (13) with the diffusion term neglected over there.

To close the equations, we still need governing equations for CB and CL, which are governed

by an exponential decay, characterized by the half-life decaying rate λ (1/s) and related source/

sink terms from Eqs (14) and (15) based on mass conservation as

dCB

dt
¼ � lCB � φSB ð20Þ

and

dCL

dt
¼ � lCL � φSL; ð21Þ

where λ is related to the plasma half-life time τ as λ = ln 2/τ. Several things should be noted for

Eqs (20) and (21). First, they are “local” compartment models. CB and CL are temporal-spatial

variables like Ci. They are consistent with the spatial distributions of ϕB, ϕL, S/V and SL/V, as

shown in Eqs (14) and (15). However, due to circulation constraint to vessels, unlike Eq (13)

there will be no diffusion and convection in them. This reduces Eqs (20) and (21) to ODE

models. It means CB and CL can be computed locally without coupling to its neighborhood

explicitly. Second, CB and CL have the same plasma half-life time λ here. It is because the drug

decays in circulation system (consisted of both blood and lymphatic vessels) through the

uptake of liver.

The initial conditions for Ci, CB and CL are specified as

Ciðr; 0Þ ¼ 0; ð22Þ

in both tumor and normal tissues and

CBð0Þ ¼ CLð0Þ ¼

(Cmax; r � Rn

0; r < Rn

: ð23Þ

The equality of CB and CL initially is due to drug goes directly from blood vessels to lymphatic

vessels at the instant of drug injection (not yet drained to the interstitium). The vanishing of

CB and CL in the necrotic region is due to the lack of vasculature. Eqs (13), (20) and (21) will

be solved for Ci(r, t), CB(t) and CL(t) in both tumor and normal tissues with boundary/interface

and initial conditions described above. Note that since Ci(r, t), CB(t) and CL(t), are propor-

tional to Cmax, judging from Eqs (13), (20) and (21). We can scale these concentrations by

Cmax, which is equivalent to set Cmax = 1 all the time.
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Parameter values

The material parameters of the tumor and normal tissues used in this work adopted the values

published by Baxter and Jain [22], and these values are listed in Table 1. Note that S/V in

tumor and normal tissues in [22] were in uniform distribution with constant value of 200 cm-1

and 70 cm-1 respectively. Since in our current model the S/V and SL/V are heterogeneously dis-

tributed in tumor, we set the maximum values of S/V to be 200 cm-1 [2, 5] and maximum val-

ues of SL/V to be 20 cm-1 in tumor tissues, and both to be uniformly distributed in normal

tissues with a constant value of 70 cm-1. As no value of hydraulic conductivity for tumors has

been reported in the literature [22], LpL value can only be deduced from the reported lymphatic

filtration coefficient LpL SL/V and the estimated SL/V value [26]. S/V and SL/V have the same

constant value in normal tissue, but different maximum values in tumor because normal tis-

sue, compared with tumor, has a much more extensively functional lymphatic network, which

removes the net fluid filtered from the blood vasculature. Thus the extravasated materials are

more quickly re-absorbed by lymphatic vessels in normal tissues [22, 27]. Also, unlisted in

Table 1, the pressure in lymphatic vessels PL is 5 mmHg smaller than the effective pressure Pe

according to [22].

Dextrans with the molecular weight of 10 kDa, 70 kDa, and 2 MDa were chosen as the

nanoparticle carriers and the characteristics of dextrans in a tumor are shown in Table 2 [28].

Nugent and Jain (1984) showed the diffusion coefficients for dextrans as a function of molecu-

lar weight according to the expression D = a(M)b (cm2/sec), where the values for a and b are

different in tumor and normal tissues [29]. The diffusivity values of 10 kDa, 70 kDa, and 2

MDa dextrans in tumor and normal tissues were estimated from Fig 4A of [30] and Fig 6 of

[31] by extrapolation, interpolation, and extrapolation, respectively.

The vascular permeability of nanoparticles in the tumor was estimated to be about 7.8 times

that of normal tissues, as measured by Gerlowski and Jain [31]. The counterpart for normal

Table 1. Hydrodynamic parameter values for tumor tissues of isolated and subcutaneous tumors as

well as for normal tissues surrounding a subcutaneous tumor [22, 32].

Parameter Tumor Normal tissue

Lp (cm/mmHg-sec) 2.8 × 10−7 0.36 × 10−7

LpL (cm/mmHg-sec) 6.94 × 10−6 1.90 × 10−7 [26]

k (cm2/mmHg-sec) 4.13 × 10−8 8.53 × 10−9

S/V (1/cm) 200* 70

SL/V (1/cm) 20* 70

PB (mmHg) 15.6 15.6

πB (mmHg) 20 20

πi (mmHg) 15 10

σs 0.82 0.91

*The maximum value for vascular distributions, as shown in Fig 2.

https://doi.org/10.1371/journal.pone.0189802.t001

Table 2. Parameters of dextrans of different molecular weights in tumors.

Parameter 10 kDa dextran 70 kDa dextran 2 MDa dextran Reference

Interstitial diffusivity (cm2/s) 1.72 × 10−6 1.4 × 10−7 5.31 × 10−10 [30, 31]

Vascular permeability ω (cm/s) 3.2 × 10−6 9.8 × 10−7 1.7 × 10−7 [31]

Sink (1/s) 1.00 × 10−3 4.17 × 10−4 1.23 × 10−4 [28]

Half life (min) 8.17 23.77 35.14 [28]

https://doi.org/10.1371/journal.pone.0189802.t002
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tissues are shown in Table 3. The parameter sink in Tables 2 and 3 is Rd in Eq (13), corre-

sponding to the drug uptake in tissues. For comparison with the nanoparticle dextran, doxoru-

bicin was chosen as the conventional molecular anti-cancer drug. The molecular weight of

doxorubicin is 544 Da and Table 4 lists its transport parameters utilized in this work. Note that

the vascular permeability ω generally has larger value in tumor than in normal tissue. For the

reason that drug leaks to both tumor and normal tissues through blood vessels, but blood ves-

sels in tumor are usually much more leaky than those in normal tissues due to the irregularly

developed vasculature during angiogenesis.

Tumor cell survival

The cumulative drug concentration can be computed by use of the equations above, which was

subsequently used to estimate the cell survival rate of tumor and normal tissues after treat-

ments. The therapeutic effect and the probability of tumor recurrence can be measured based

on the tumor cell survival rate. In 1983, Greene et al. reported that the survival rate in a tumor

was an exponential function of the extracellular concentration of anti-cancer drug [36]. In

2000, El-Kareh and Secomb argued that it would be more reliable to estimate the cell survival

rate with the intracellular concentration in cells [12]. In our model, the cell survival rate (SF)

was defined as SF = N/N0, where N0 and N denote the numbers of cells before and after a treat-

ment. The relationship between the cell survival fraction and the extracellular concentration

was defined as:

ln SF ¼ � ks �

Z 1

0

Ciðr; tÞdt ¼ � ks AUCðrÞ; ð24Þ

where ks is the dose-survival constant and AUC, abbreviation for area under the curve, is a fre-

quently used pharmacokinetic term denoting the cumulative concentration in the interstitium

over time; in other words, the area under the concentration-time curve, which can be

described as

AUCðrÞ ¼
Z 1

0

Ciðr; tÞdt: ð25Þ

The dose-survival constant (ks) employed the value given in Jusko’s work [37], which is

4.329 × 10−3 (1/nM-hr). The cell survival rate after each single treatment can be estimated by

Table 3. Parameters of dextrans of different molecular weights in normal tissues.

Dextran parameters 10 kDa 70 kDa 2 MDa Reference

Interstitial diffusivity (cm2/s) 1.64 × 10−6 5.0 × 10−9 3.37 × 10−13 [30, 31]

Vascular permeability ω (cm/s) 4.06 × 10−7 1.24 × 10−7 2.16 × 10−8 [31]

Sink (1/s) 5.00 × 10−4 2.085 × 10−4 6.15 × 10−5 derived from [28]

Half life (min) 8.17 23.77 35.14 [28]

https://doi.org/10.1371/journal.pone.0189802.t003

Table 4. Parameters of doxorubicin.

Parameter Tumor Normal tissue Reference

Interstitial diffusivity (cm2/s) 3.40 × 10−6 1.58 × 10−6 [33]

Vascular permeability ω (cm/s) 3.00 × 10−4 3.75 × 10−5 [33]

Sink (1/s) 2.689 × 10−3 2.689 × 10−3 [34]

Half life (min) 5.3 5.3 [35]

https://doi.org/10.1371/journal.pone.0189802.t004
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use of Eq (24). In the field of pharmacokinetics, the area under the curve (AUC) is the definite

integral (from zero to infinity) in a plot of drug concentration in tissue vs. time. The AUC rep-

resents the total drug exposure over time.

When estimating the cell survival rate after multiple treatments, the regrowth of tumor cells

after each treatment needs to be considered. The tumor cell growth can be estimated by the

three-parameter Gompertzian function [18, 19, 38]:

niðtÞ ¼ Ni exp ln ð
N1
Ni
Þ½1 � exp ð� btÞ�

� �

; ð26Þ

where Ni is the number of viable tumor cells after i-th treatment; ni(t) is the number of tumor

cells at time t after i-th treatment; N1 is the saturated cell number that can be reached after a

long period of time and b is related to the initial tumor growth rate [38]. Here we adopted the

initial number of tumor cells as N0� 5 × 109, N1 = 3.1 × 1012 and b = 0.0283 month-1 from

the work of Yorke et al. [38]. The cell number for the 1-cm thick normal tissue was assumed

N1 = 4.64 × 1012 here. We assumed that the number of cells is proportional to the tumor vol-

ume, which means that the tumor size shrinks (R decreases) as the number of cells decreases,

and assumed that the ratio of normal tissue density to tumor cell density to be 0.2 [39].

Another assumption is that the shape of vascular density distribution in the tumor remains

unchanged after each treatment. Moreover, the regrowth of normal tissue cells was also evalu-

ated by use of Eq (26) under the assumptions that the mean growth rate b of normal tissues is

half of that in a tumor.

The whole simulation procedures are summarized and depicted by the flowchart contained

in Fig 4. The flow chart describes the repeated procedures in multiple treatments consisted of

the following stages: (1) drug delivery phase: computing C(r, t) and AUC(r), (2) tumor cell kill-

ing phase: computing cell survival rate SF and tumor radius after treatment, (3) tumor

regrowth phase: computing tumor radius after regrowth.

Numerical method

Here we employ method of lines (MOL) with the semi-discretization in space at first for Eq

(13) by multi-block Chebyshev pseudospectral method. Together with interface/boundary

conditions, it then would result in a set of ordinary differential algebraic equations (ODAEs)

in time. We can then solve this ODAE set by a highly efficient variable-step-variable-order

(VSVO) ODAE solver like ode15s in Matlab. Due to the high order of accuracy intrinsic to

pseudospectral method, far less grid points are needed to achieve quite accurate numerical

results compared with traditional finite difference/element methods. Also, since ode15s has an

error estimate at each step, it can automatically adjust its time step to avoid instability and gain

the optimal efficiency in time integration.

Results and discussions

Our model can compute the spatial distribution of the interstitial pressure and the cumulative

drug concentration featured by AUC. Furthermore, the spatially-averaged AUCs resulted

from different anti-cancer agents can be calculated and hence the therapeutic effect of nano-

particle carriers and molecular chemotherapeutic agents can be evaluated via the cell survival

rate. A 2-cm (diameter) subcutaneous tumor with a 0.8-cm necrotic region, i.e., R = 1 cm and

Rn = 0.4R, embedded in a 1 cm thick normal tissues was used in our current study.

Fig 5 shows the typical time evolution of drug concentration distributions in a subcutane-

ous tumor. This time evolution shows different behaviors in the tumor necrotic region, tumor

viable region and normal tissue surrounding the tumor. In the necrotic region, since neither
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Fig 4. The flowchart that descries the repeated procedures in multiple treatments.

https://doi.org/10.1371/journal.pone.0189802.g004
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Fig 5. A series of snapshots showing time evolution of doxorubicin concentration distribution in a

subcutaneous tumor. A: t = 0; B: t = 10, C: t = 30, D: t = 80, E: t = 220, F: t = 500, G: t = 900; H: t = 1300 sec.

https://doi.org/10.1371/journal.pone.0189802.g005
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blood nor lymphatic vessels are present and the interstitial pressure is flat there as well, the

convection and source/sink terms vanish in Eq (13). The only way for drug to penetrate the

necrotic region is through diffusion, which is generally weak there. Though most tumor cells

are already deceased in the necrotic region, it does not mean the amount of the drug penetra-

tion is insignificant in treating a tumor since there are still some surviving tumor stem cells

hiding inside. In the viable tumor region, the drug level increases fast in the beginning due to

double sources from the permeation terms of φSB and φSL in Eq (13). The first term in Eq (14)

acts as the source while the first term in Eq (15) acts as sink due to ϕB and ϕL, as shown in Fig

3C. These two terms roughly cancel each other except around the interface of tumor and nor-

mal tissues. The second term in Eqs (14) and (15) is the major source term for drug trans-

ported from vessels (blood and lymphatic vessels) into the interstitium, and the driving force is

the concentration difference between vessels and interstitium. This driving force is modulated

by the vessel permeability (ω and ωL) and vascular density (S/V and SL/V). Also the increase of

Ci is biased towards the interface due to convection, as shown in Fig 3B. Accompanying the

increase of Ci naturally comes the decay of both CB and CL. Here CB decays much faster than

CL in the viable tumor region chiefly due to S/V>> SL/V.

In normal tissues, unlike the viable tumor region, the interstitial concentration Ci increases

very slowly in the beginning due to small values of φSB and φSL. This is a result of the much

smaller vascular permeability (ω and ωL) in normal tissues compared with its counterpart in

tumors, as shown in Table 4. In addition, smaller vascular densities (S/V and SL/V) in normal

tissue than those in tumor contribute to this slow increase as well. Drug penetrating into nor-

mal tissue through convection (driven by a higher interstitial pressure in a tumor) and diffu-

sion (due to faster growth of drug concentration in the viable tumor region in the beginning)

also causes the increase of drug concentration in normal tissue, but only limited to normal tis-

sues near the interface. Generally, we wish AUC for normal tissues to be as small as possible to

avoid harming normal tissues. As time goes, Ci changes from increasing to decreasing and dies

out eventually due to continuous weakening of driving force and the uptake of drug by cells in

interstitium.

The concentration contours of 10 kDa, 70 kDa, and 2 MDa dextrans as well as that of doxo-

rubicin are displayed in subfigures A-D of Fig 6. It can be seen from Fig 6A and 6D that con-

centrations of small particles like 10 kDa dextran and molecular drug doxorubicin have larger

contour values, but decay quickly over time. On the contrary, larger nanoparticles like 70 kDa

and 2 MDa dextrans have small contour values, but decay much more slowly. This is mainly

controlled by vascular permeability. As shown in Tables 2 and 4, vascular permeability mono-

tonically decreases with molecular weight. Generally speaking, a larger vascular permeability

causes drug to leak more quickly from vessels into interstitium, result in a higher level of inter-

stitial concentration, but at the same time decay more quickly. On the contrary, smaller vascu-

lar permeability causes drug to leak slowly from vessels into interstitium, result in smaller

levels of concentration, but sustain longer before vanishing. Both vascular permeability and

density are smaller in normal tissue than in tumor; consequently, less drug is able to leak from

vessels into the interstitium. As a result, drug concentration levels are generally lower in nor-

mal tissue than in tumor. Note that the concentration contours of 2 MDa dextran exist almost

strictly in the viable tumor region, which indicates almost no drug transport from tumor into

normal tissue. This can be attributed to its small concentration difference between tumor and

normal tissues owing to the smallest vascular permeability among all drugs. Besides, its small-

est diffusion coefficients among all drugs also hinders the diffusion of drug from tumor to nor-

mal tissues. It naturally implies that 2 MDa dextran kills tumor cells most and at the same time

harms normal tissue least. Actually, the therapeutic effect of drug should be evaluated by its

AUC distribution, i.e., the time integral of the local concentration. Fig 6 shows the contours of

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 15 / 23

https://doi.org/10.1371/journal.pone.0189802


drug concentration Ci(r, t) computed from Eq (13), and its time integral from zero to infinity

will generate the spatial distribution of AUC like Fig 7A. Therefore, both the drug concentra-

tion level and its duration in the interstitium are important contributing factors to AUC. Judg-

ing from 2 MDa and 70 kDa dextrans having larger spatial distributions of AUC in tumor

tissues than 10 kDa dextran and doxorubicin, as shown in Fig 7A, it appears that the duration

time affects the AUC more significantly than the momentary concentration levels here.

The spatial distributions of AUC are shown in Fig 7A and the average values in different

regions are listed in Table 5. This gives us a more precise therapeutic effect prediction than Fig

6. All anti-cancer drugs shared a similar distribution pattern in AUC. Compared with the nor-

mal tissue region, their AUCs in the tumor vascular region were usually high, but extremely

low in the necrotic core. This low AUC in the necrotic region is simply because there is no vas-

cular vessel there to transport drugs. Therefore, very limited amount of drug is transported

into a necrotic region solely via diffusion from a vascular region. Also, this low AUC in the

necrotic region might imply insufficient dosage to kill the tumor stem cells hiding in it. Note

Fig 6. The concentration contours showing time evolution of dextrans and doxorubicin distributions in a subcutaneous tumor. A:

10 kDa dextran, B: 70 kDa dextran, C: 2 MDa dextran and D: doxorubicin. The smallest contour value C/Cmax = 0.005 is marked.

https://doi.org/10.1371/journal.pone.0189802.g006
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that smaller drugs penetrate deeper into normal tissues and affect more normal tissues while

larger nanoparticles display a shallower penetration. This has been analyzed via Fig 6. The sur-

vival rate of normal tissue will be particularly affected by the degree of penetration.

As shown in Table 5, the average AUCs of larger-sized dextrans were much higher in the

vascular region and lower in normal tissue than those of doxorubicin, which suggests that

larger-sized dextrans generally have a better therapeutic effect and less side effect than doxoru-

bicin. This shows that using larger-sized nanoparticles as drug carriers is more effective at

treating a tumor and less harmful to the surrounding normal tissues than molecular chemo-

therapeutic agents. Based on average AUCs, 2 MDa dextran has the best therapeutic effect to

the vascular tumor region and second least side effect to normal tissues, and this generally

indicates that larger nanoparticles are the better choice for treating a well-vascularized tumor.

Besides calculating the average AUC of drugs, we estimated the cell survival rate based on

Eq (24) and used it to quantify the therapeutic effect after treatments, as shown in Fig 7B. Con-

sistently, 2 MDa dextran has the best performance with lowest survival rate distribution in

tumor and second highest survival rate distribution in normal tissue.

The tumor cell responses to all four kinds of drug after multiple treatments were also inves-

tigated and the spatially-averaged survival rates of viable tumor region and normal tissue are

depicted in Fig 8. The survival rate drops after each treatment followed by regrowth based on

Eq (26) for both tumor and normal tissue. For comparison, in Fig 8, doxorubicin and 10 kDa

are grouped together to represent smaller-sized drugs while 70 kDa and 2 MDa dextrans are

grouped together to represent larger-sized drugs. As shown by the red curve in Fig 8A, the

Fig 7. Spatial distributions of AUC and SF for dextrans and doxorubicin in a subcutaneous tumor. A: The spatial distribution of

10-kDa, 70-kDa, 2-MDa dextrans and doxorubicin. B: The corresponding spatial distribution of the cell survival rates. The 2-cm (R = 1 cm)

tumor with a 0.8-cm (Rn = 0.4R) necrotic region was immersed in a 1 cm thick normal tissues.

https://doi.org/10.1371/journal.pone.0189802.g007

Table 5. The spatially-average AUCs in the tumor using various sized dextrans and doxorubicin.

Tissue type AUC�
10kDa AUC�

70kDa AUC�
2MDa AUC�DOX

Vascular region 190.19 447.50 438.35 254.71

Necrotic region 6.62 2.76 0.27 21.12

Normal tissue 73.40 155.39 100.40 215.74

*The unit of AUC is %Cmax × sec, where Cmax is the injected drug dose.

https://doi.org/10.1371/journal.pone.0189802.t005
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tumor cell survival rate after the first treatment of 10 kDa dextran was about 79.82% and about

50.55% of the tumor cells were killed after the fourth treatment. The tumor cell survival rate

after each treatment of doxorubicin is depicted by the magenta, dashed curve in Fig 8A, which

was about 73.79% after one doxorubicin treatment. The overall tumor cell survival rate was

about 36.15% after four doxorubicin treatments. In addition to the effectiveness of killing can-

cer cells, the side effects to normal tissues during chemotherapy also needs to be addressed.

Therefore, the cell survival rates of normal tissue were also investigated. From Fig 8B, the

Fig 8. The overall cell survival rate for tumor and normal tissues after four treatments. A and C show the survival rates in tumor while

B and D show the survival rates of normal tissues after 4 treatments of drugs. The abscissa represents the number of treatments with 10-day

treatment interval. Cmax is the maximum concentration in the blood vessel, which is taken to be 1000 nM here.

https://doi.org/10.1371/journal.pone.0189802.g008

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 18 / 23

https://doi.org/10.1371/journal.pone.0189802.g008
https://doi.org/10.1371/journal.pone.0189802


normal tissue survival rate after the first treatment of 10 kDa dextran delineated by the red

curve was about 91.56%, and about 70.49% of normal tissue cells were left after the whole ther-

apy program. At the same time a large fraction of normal tissue was killed by doxorubicin

treatment (the survival rate after the first treatment was about 77.15%) and only 35.69% of nor-

mal tissue cells were left after the whole therapy program. It is worth noting that the normal

tissue survival rate was almost the same as the tumor survival rate in doxorubicin treatment. In

other words, doxorubicin kills cancer and normal cells without distinguishment. These results

show that 10 kDa dextran, though less efficient at killing tumor cells, was less harmful to nor-

mal tissues compared with doxorubicin. Fig 8C and 8D show the tumor and normal tissue sur-

vival rates after multiple treatments of 70 kDa and 2 MDa dextrans. For multiple treatments,

larger-sized drugs like 70 kDa and 2 MDa dextrans are generally more effective in killing

tumor cells compared with smaller-sized drugs like doxorubicin and 10 kDa dextran, and have

a normal tissue survival rate between doxorubicin and 10 kDa dextran, which can be compre-

hended by AUC and SF in the normal tissue region shown in Fig 7.

Effects of different treatment plans can be compared by the current model as well, as

depicted by Fig 9. In the first therapy program, the maximum concentration (Cmax) in the

blood vessel was assumed to be 1000 nM and the total number of treatments was four times

with 10 days interval between two treatments. In the second therapy program, the maximum

concentration (Cmax) in the blood vessel was cut into half to be 500 nM and 8 treatments were

administered with 5 days interval between two treatments. The tumor and normal tissue cell

survival rates resulted from these two programs were delineated in Fig 9. The result shows that

the performance differences between 4 longer interval treatments and 8 shorter interval treat-

ments are negligible, judging from both the tumor and normal tissue survival rates. Though

the dose per treatment in the second plan is half of the first one and seems to be less toxic to

the patient, it does not end up with a higher survival rate of normal tissue than the first treat-

ment. The figure of the tumor and normal tissue cell survival rates after multiple treatments

provides important prognostic information regarding the survival rate and percentage of the

Fig 9. The overall survival rate after 10 kDa dextran treatments. The survival rates of tumor cells (blue curve) and normal cells (red

dashed curve). A: The maximum concentration (Cmax) in the blood vessel was assumed to be 1000 nM and four treatments were

administered with a time interval between two treatments of 10 days. B: The maximum concentration (Cmax) in the blood vessel was

assumed to be 500 nM and the total number of treatments was eight times with a time interval between two treatments of 5 days.

https://doi.org/10.1371/journal.pone.0189802.g009
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cell regrowth. It is of great help to evaluate the efficiency of a treatment plan. Note that in these

multiple-treatment simulations, S/V and SL/V have been fixed values as tabulated in Table 1.

However, angiogenesis after each treatment may actually be different and heterogeneity in the

spatial distribution of blood and lymphatic vessels may occur, which means S/V and SL/V may

vary after each treatment. Not just angiogenesis, even geometry of tumor would be different

after each treatment. All these effects are not considered here, but will be studied in the future

work by extending the current model to higher dimensions.

Conclusions

The proposed model was employed to compute the interstitial pressure, dynamics of drug

transport, AUC distributions of drugs of various sizes, and tumor/normal tissue cell survival

rates in a subcutaneous tumor. The model is useful to quantify the therapeutic effect. It has

been found that AUCs of all drugs are generally high in the tumor vascular region, low in nor-

mal tissues, and extremely low in the necrotic region. Larger nanoparticles like 2 MDa and 70

kDa dextrans display high AUCs in the tumor vascular region and, on the contrary, smaller

nanoparticle drugs like 10 kDa dextran and molecular anti-cancer agents like doxorubicin

show low AUC there. AUC shows that the delivery of all kinds of anti-cancer agents in the

necrotic region was insufficient to kill the tumor stem cells hiding in it. Therefore, other treat-

ment methods such as surgical removal and thermal therapy may be used to enhance the effec-

tiveness of cancer treatment. The distribution of cell survival rates demonstrated that the side

effect to normal tissues by use of dextrans was limited to a small range while doxorubicin

caused damage extensively. Overall, larger-sized nanoparticles were found to deliver better

therapeutic effects to the tumor region with limited toxicity to the surrounding tissues, as com-

pared with the molecular anti-cancer agents such as doxorubicin.

In addition to estimating the delivery of drugs in tumors, the current model can be of

help in the treatment planning. By estimating the cell survival rate after each treatment and

regrowth between treatments, our method can be used to compare treatment plans with dif-

ferent parameters like dosage and frequency of treatment cycle.

Future works

In the future, we plan to extend the present model to a more practical and complete one by the

modification of the following three modules. (1) Geometry and hydrodynamics module: con-

sidering tumor with a geometry of higher dimensions; outlining explicit distributions of leaky

blood and lymphatic vessels through angiogenesis into the model while still treating tumor

interstitium as a porous media and modeling it by Darcy’s law. (2) Drug transport module:

modifying the current drug transport model for the tumor environment mentioned in (1).

(3) Time evolution of the spatial distribution of tumor cell density module: deriving a set of

differential equations describing the rate of tumor cell density changes at least by its growth

with nutrition supplied, death caused by the drug uptake in tumor, and natural death. By con-

sidering the above modified modules, simulations of this new model will shed more light on

significant mechanisms of drug delivery inside tumor and, at the same time, offer a better and

more practical evaluation of tumor treatment.

Acknowledgments

This work was partially supported in part by the Bureau of Animal and Plant Health Inspec-

tion and Quarantine (Dr. Chou) and the Ministry of Science and Technology under grant

Nos. MOST 105-2221-E-002-083- (Dr. Chou), MOST 105-2221-E-002-017-MY3 (Dr. Lin),

and MOST 104-2115-M-035 -002 -MY2 (Dr. Horng).

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 20 / 23

https://doi.org/10.1371/journal.pone.0189802


Author Contributions

Conceptualization: Tzyy-Leng Horng, Win-Li Lin.

Data curation: Cheng-Ying Chou, Wan-I Chang.

Formal analysis: Cheng-Ying Chou.

Funding acquisition: Cheng-Ying Chou, Tzyy-Leng Horng, Win-Li Lin.

Investigation: Cheng-Ying Chou, Win-Li Lin.

Methodology: Tzyy-Leng Horng.

Software: Tzyy-Leng Horng.

Visualization: Cheng-Ying Chou.

Writing – original draft: Wan-I Chang.

Writing – review & editing: Cheng-Ying Chou, Tzyy-Leng Horng, Win-Li Lin.

References
1. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic

applications and developments. Nanomedicine: Nanotechnology, Biology and Medicine. 2014; 10

(1):19–34. https://doi.org/10.1016/j.nano.2013.07.001

2. Soltani M, Chen P. Effect of tumor shape and size on drug delivery to solid tumors. Journal of Biological

Engineering. 2012; 6(1):4. https://doi.org/10.1186/1754-1611-6-4 PMID: 22534172

3. Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous

tumors: implications for therapy. Cancer Research. 1990; 50(15):4478–4484. PMID: 2369726

4. Liu LJ, Brown SL, Ewing JR, Ala BD, Schneider KM, Schlesinger M. Estimation of Tumor Interstitial

Fluid Pressure (TIFP) Noninvasively. PLoS ONE. 2016; 11(7):e0140892. https://doi.org/10.1371/

journal.pone.0140892 PMID: 27467886

5. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfu-

sion and lymphatics. Microvascular Research. 1990; 40(2):246–263. https://doi.org/10.1016/0026-2862

(90)90023-K PMID: 2250603

6. Shubik P. Vascularization of tumors: a review. Journal of Cancer Research and Clinical Oncology.

1982; 103(3):211–226. https://doi.org/10.1007/BF00409698 PMID: 6181069

7. Jain RK. Determinants of tumor blood flow: a review. Cancer Research. 1988; 48(10):2641–2658.

PMID: 3282647

8. Steuperaert M, Labate GFD, Debbaut C, Wever OD, Vanhove C, Ceelen W, et al. Mathematical model-

ing of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Deliv-

ery. 2017; 24(1):491–501. https://doi.org/10.1080/10717544.2016.1269848 PMID: 28181817

9. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine

sarcoma: a molecular and functional evaluation. Cancer Research. 2000; 60(16):4324–4327. PMID:

10969769

10. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, et al. Lymphatic metastasis

in the absence of functional intratumor lymphatics. Science. 2002; 296(5574):1883–1886. https://doi.

org/10.1126/science.1071420 PMID: 11976409

11. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, Di Tomaso E, et al. Role of tumor–host inter-

actions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proceedings of the

National Academy of Sciences. 2001; 98(8):4628–4633. https://doi.org/10.1073/pnas.081626898

12. El-Kareh AW, Secomb TW. A mathematical model for comparison of bolus injection, continuous infu-

sion, and liposomal delivery of doxorubicin to tumor cells. Neoplasia. 2000; 2(4):325–338. https://doi.

org/10.1038/sj.neo.7900096 PMID: 11005567

13. Soltani M, Chen P. Numerical Modeling of Fluid Flow in Solid Tumors. PLoS ONE. 2011; 6(6):e20344.

https://doi.org/10.1371/journal.pone.0020344 PMID: 21673952

14. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment fail-

ure. Nature Reviews Cancer. 2005; 5(7):516–525. https://doi.org/10.1038/nrc1650 PMID: 15965493

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 21 / 23

https://doi.org/10.1016/j.nano.2013.07.001
https://doi.org/10.1186/1754-1611-6-4
http://www.ncbi.nlm.nih.gov/pubmed/22534172
http://www.ncbi.nlm.nih.gov/pubmed/2369726
https://doi.org/10.1371/journal.pone.0140892
https://doi.org/10.1371/journal.pone.0140892
http://www.ncbi.nlm.nih.gov/pubmed/27467886
https://doi.org/10.1016/0026-2862(90)90023-K
https://doi.org/10.1016/0026-2862(90)90023-K
http://www.ncbi.nlm.nih.gov/pubmed/2250603
https://doi.org/10.1007/BF00409698
http://www.ncbi.nlm.nih.gov/pubmed/6181069
http://www.ncbi.nlm.nih.gov/pubmed/3282647
https://doi.org/10.1080/10717544.2016.1269848
http://www.ncbi.nlm.nih.gov/pubmed/28181817
http://www.ncbi.nlm.nih.gov/pubmed/10969769
https://doi.org/10.1126/science.1071420
https://doi.org/10.1126/science.1071420
http://www.ncbi.nlm.nih.gov/pubmed/11976409
https://doi.org/10.1073/pnas.081626898
https://doi.org/10.1038/sj.neo.7900096
https://doi.org/10.1038/sj.neo.7900096
http://www.ncbi.nlm.nih.gov/pubmed/11005567
https://doi.org/10.1371/journal.pone.0020344
http://www.ncbi.nlm.nih.gov/pubmed/21673952
https://doi.org/10.1038/nrc1650
http://www.ncbi.nlm.nih.gov/pubmed/15965493
https://doi.org/10.1371/journal.pone.0189802


15. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat-

ment Reports. 1977; 61(7):1307. PMID: 589597

16. Norton L, Simon R. The norton-simon hypothesis revisited. Cancer Treatment Reports. 1986; 70

(1):163. PMID: 3510732

17. Gerlee P. The model muddle: in search of tumor growth laws. Cancer Research. 2013; 73(8):2407–

2411. https://doi.org/10.1158/0008-5472.CAN-12-4355 PMID: 23393201

18. Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JM, Hlatky L, et al. Classical mathematical models

for description and prediction of experimental tumor growth. PLoS Computational Biology. 2014; 10(8):

e1003800. https://doi.org/10.1371/journal.pcbi.1003800 PMID: 25167199

19. Geng C, Paganetti H, Grassberger C. Prediction of Treatment Response for Combined Chemo-and

Radiation Therapy for Non-Small Cell Lung Cancer Patients Using a Bio-Mathematical Model. Scientific

Reports. 2017; 7(1):13542. https://doi.org/10.1038/s41598-017-13646-z PMID: 29051600

20. Norton L. A Gompertzian model of human breast cancer growth. Cancer Research. 1988; 48(24 Part

1):7067–7071. PMID: 3191483

21. Mombach JC, Lemke N, Bodmann BE, Idiart MAP. A mean-field theory of cellular growth. EPL (Euro-

physics Letters). 2002; 59(6):923. https://doi.org/10.1209/epl/i2002-00244-6

22. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and

convection. Microvascular Research. 1989; 37(1):77–104. https://doi.org/10.1016/0026-2862(89)

90074-5 PMID: 2646512

23. Sefidgar M, Soltani M, Raahemifar K, Sadeghi M, Bazmara H, Bazargan M, et al. Numerical modeling

of drug delivery in a dynamic solid tumor microvasculature. Microvascular Research. 2015; 99:43–56.

http://dx.doi.org/10.1016/j.mvr.2015.02.007. PMID: 25724978

24. Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid

tumors. Proceedings of the National Academy of Sciences. 2013; 110(46):18632–18637. https://doi.

org/10.1073/pnas.1318415110

25. Wu J, Long Q, Xu S, Padhani AR, Jiang Y. Simulation of 3D solid tumor angiogenesis including arteri-

ole, capillary, and venule. Mol Cell Biomech. 2008; 5:1–23.

26. Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image-based solid

tumor computational model with heterogeneous vasculature and porosity. Annals of biomedical engi-

neering. 2011; 39(9):2360. https://doi.org/10.1007/s10439-011-0349-7 PMID: 21751070

27. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors: III. Role of binding and metabo-

lism. Microvascular research. 1991; 41(1):5–23. https://doi.org/10.1016/0026-2862(91)90003-T PMID:

2051954

28. Chou CY, Huang CK, Lu KW, Horng TL, Lin WL. Investigation of the spatiotemporal responses of nano-

particles in tumor tissues with a small-scale mathematical model. PLoS ONE. 2013; 8(4):e59135.

https://doi.org/10.1371/journal.pone.0059135 PMID: 23565142

29. Nugent LJ, Jain RK. Extravascular diffusion in normal and neoplastic tissues. Cancer Research. 1984;

44(1):238–244. PMID: 6197161

30. Clauss MA, Jain RK. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tis-

sues. Cancer Research. 1990; 50(12):3487–3492. PMID: 2340499

31. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvascular

Research. 1986; 31(3):288–305. https://doi.org/10.1016/0026-2862(86)90018-X PMID: 2423854

32. Soltani M, Sefidgar M, Bazmara H, Casey ME, Subramaniam RM, Wahl RL, et al. Spatiotemporal distri-

bution modeling of PET tracer uptake in solid tumors. Annals of Nuclear Medicine. 2017; 31(2):109–

124. https://doi.org/10.1007/s12149-016-1141-4 PMID: 27921285

33. Zhan W, Gedroyc W, Xu XY. Effect of heterogeneous microvasculature distribution on drug delivery to

solid tumour. Journal of Physics D: Applied Physics. 2014; 47(47):475401. https://doi.org/10.1088/

0022-3727/47/47/475401

34. Eikenberry S. A tumor cord model for doxorubicin delivery and dose optimization in solid tumors. Theo-

retical Biology and Medical Modelling. 2009; 6(1):16. https://doi.org/10.1186/1742-4682-6-16 PMID:

19664243

35. Rahman A, Carmichael D, Harris M, Roh JK. Comparative pharmacokinetics of free doxorubicin and

doxorubicin entrapped in cardiolipin liposomes. Cancer Research. 1986; 46(5):2295–2299. PMID:

3697976

36. Greene RF, Collins JM, Jenkins JF, Speyer JL, Myers CE. Plasma pharmacokinetics of adriamycin and

adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer

Research. 1983; 43(7):3417–3421. PMID: 6850648

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 22 / 23

http://www.ncbi.nlm.nih.gov/pubmed/589597
http://www.ncbi.nlm.nih.gov/pubmed/3510732
https://doi.org/10.1158/0008-5472.CAN-12-4355
http://www.ncbi.nlm.nih.gov/pubmed/23393201
https://doi.org/10.1371/journal.pcbi.1003800
http://www.ncbi.nlm.nih.gov/pubmed/25167199
https://doi.org/10.1038/s41598-017-13646-z
http://www.ncbi.nlm.nih.gov/pubmed/29051600
http://www.ncbi.nlm.nih.gov/pubmed/3191483
https://doi.org/10.1209/epl/i2002-00244-6
https://doi.org/10.1016/0026-2862(89)90074-5
https://doi.org/10.1016/0026-2862(89)90074-5
http://www.ncbi.nlm.nih.gov/pubmed/2646512
http://dx.doi.org/10.1016/j.mvr.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25724978
https://doi.org/10.1073/pnas.1318415110
https://doi.org/10.1073/pnas.1318415110
https://doi.org/10.1007/s10439-011-0349-7
http://www.ncbi.nlm.nih.gov/pubmed/21751070
https://doi.org/10.1016/0026-2862(91)90003-T
http://www.ncbi.nlm.nih.gov/pubmed/2051954
https://doi.org/10.1371/journal.pone.0059135
http://www.ncbi.nlm.nih.gov/pubmed/23565142
http://www.ncbi.nlm.nih.gov/pubmed/6197161
http://www.ncbi.nlm.nih.gov/pubmed/2340499
https://doi.org/10.1016/0026-2862(86)90018-X
http://www.ncbi.nlm.nih.gov/pubmed/2423854
https://doi.org/10.1007/s12149-016-1141-4
http://www.ncbi.nlm.nih.gov/pubmed/27921285
https://doi.org/10.1088/0022-3727/47/47/475401
https://doi.org/10.1088/0022-3727/47/47/475401
https://doi.org/10.1186/1742-4682-6-16
http://www.ncbi.nlm.nih.gov/pubmed/19664243
http://www.ncbi.nlm.nih.gov/pubmed/3697976
http://www.ncbi.nlm.nih.gov/pubmed/6850648
https://doi.org/10.1371/journal.pone.0189802


37. Jusko WJ. Pharmacodynamics of chemotherapeutic effects: Dose-time-response relationships for

phase-nonspecific agents. Journal of Pharmaceutical Sciences. 1971; 60(6):892–895. https://doi.org/

10.1002/jps.2600600618 PMID: 5166939

38. Yorke E, Fuks Z, Norton L, Whitmore W, Ling C. Modeling the development of metastases from primary

and locally recurrent tumors: comparison with a clinical data base for prostatic cancer. Cancer

Research. 1993; 53(13):2987–2993. PMID: 8319206

39. Jung KY, Cho SW, Kim YA, Kim D, Oh BC, Park DJ, et al. Cancers with higher density of tumor-associ-

ated macrophages were associated with poor survival rates. Journal of Pathology and Translational

Medicine. 2015; 49(4):318–324. https://doi.org/10.4132/jptm.2015.06.01 PMID: 26081823

Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0189802 December 29, 2017 23 / 23

https://doi.org/10.1002/jps.2600600618
https://doi.org/10.1002/jps.2600600618
http://www.ncbi.nlm.nih.gov/pubmed/5166939
http://www.ncbi.nlm.nih.gov/pubmed/8319206
https://doi.org/10.4132/jptm.2015.06.01
http://www.ncbi.nlm.nih.gov/pubmed/26081823
https://doi.org/10.1371/journal.pone.0189802

