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This study examines the coupled effects of pulsatile blood flow in a thermally significant blood vessel, the effec-
tive thermal conductivity of tumor tissue, and the thermal relaxation time in solid tissues on the temperature dis-
tributions during thermal treatments. Due to the cyclic nature of blood flow as a result of the heartbeat, the blood
pressure gradient along a blood vesselwasmodeled as a sinusoidal change to imitate a pulsatile blood flow. Con-
sidering the enhancement in the thermal conductivity of living tissues due to blood perfusion, the effective tissue
thermal conductivity was investigated. Based on the finite propagation speed of heat transfer in solid tissues, a
modified wave bio-heat transfer transport equation in cylindrical coordinates was used. The numerical results
show that a larger relaxation time results in a higher peak temperature. In the rapid heating case I (i.e., heating
power density of 100 W cm−3 and heating duration of 1 s) and a heartbeat frequency of 1 Hz, the maximum
temperatures were 62.587 and 63.107 °C for thermal relaxation times of 0.464 and 6.825 s, respectively. In con-
trast, the same total heated energy density of 100 J cm−3 in a slow heating case (i.e., heating power density of
5 W cm−3 and heating duration of 20 s) revealed maximum temperatures of 57.724 and 61.233 °C for thermal
relaxation times of 0.464 and 6.825 s, respectively. In rapid heating cases, the occurrence of the peak temperature
exhibits a time lag due to the influence of the thermal relaxation time. In contrast, in slow heating cases, the peak
temperaturemay occur prior to the end of the heating period.Moreover, the frequency of the pulsatile blood flow
does not appear to affect the maximum temperature in solid tumor tissues.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Quantitative heat transfer in living tissues is an essential issue in
many medical treatments, such as cryosurgery [1–3] and hyperthermia
[4–6]. Heat transfer in living tissues is a complicated process that
involves heat conduction through solid tissues, heat convection
between moving fluids (e.g., blood flow, lymphatic fluids, and intersti-
tial fluids) and solid tissues, heat generation by tissue metabolism,
non-directional tissue blood perfusion (e.g., thermoregulatory mecha-
nisms, i.e., the scalar blood perfusion term may be used as a heat sink
for thermal therapy or a heat source for cryosurgery), which was first
quantitatively proposed by Pennes (1948) [7], and heat deposition
through an external heating source in thermal treatments. In the Pennes
model for a blood-perfused tissue, there is an essential assumption that
energy exchange between blood vessels and the surrounding tissues
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occursmainly across the vascular wall of capillaries, which have diame-
ters less than approximately 200 μm [8]. During thermal treatments, it
is important to have complete knowledge of the temperature distribu-
tion in living tissues. Thermal therapy using high temperatures can kill
cancer cells [5,9–12]. High temperature induces the thermal denatur-
ation of proteins and can cause thermal coagulation necrosis in biologi-
cal tissues [13–15].

Blood flow can significantly affect the temperature distributions
during thermal treatments, particularly in large blood vessels [16–19].
Previous studies have investigated the significance of thermally signifi-
cant blood vessels (i.e., larger than 200 μm in diameter) in the absorbed
power density and the temperature distributions during thermal
therapies. In their models, however, these researchers did not consider
the impact of pulsatile blood flow due to the periodic-in-time nature of
the heart pumping. The velocity profile inside a straight blood vessel
with pulsatile blood flow, which is driven by an oscillating pressure
gradient, was first analyzed by Womersley [20]. He used a pressure
gradient with a varying time period coupled with the frequency to
describe the periodic phenomenon of pulsatile blood flow in blood
vessels and obtained an exact solution of the equations of viscous fluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.icheatmasstransfer.2014.01.019&domain=pdf
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Nomenclature

c specific heat [J kg−1 K−1]
c0 coefficient in Eq. (5), c0 ¼ − 8 μ w

r20
c1 coefficient in Eq. (5)
d diameter of blood vessel [mm], d = 2r0
f frequency in Eq. (5) [s−1]
fac coefficient of the relative intensity of pulsation in a

blood vessel, fac ¼ c1
c0

J0 Bessel function of the first kind of order zero in Eq. (10)
k thermal conductivity [W m−1 K−1]
kb thermal conductivity of blood [W m−1 K−1]
kt thermal conductivity of tissue [W m−1 K−1]
p pressure [kg m−2]
q heat flux [W m−2]
r distance from the z-axis [mm]
r0 radius of a blood vessel [mm]
r1 maximum radius of the heated target of tumor tissue

[mm], r1 = 5 mm
t time [s]
th heating duration [s]
Q heating power density [W cm−3]
�Q average volume flow rate [m3 s−1]; Eq. (8)
Qm rate of tissue metabolic heat generation in Eq. (1)

[W cm−3]
T temperature [K]
�T period of time [s] in Eq. (8)
Ta temperature of arterial blood in Eq. (1) [K], Ta = 310 K
Tb temperature of blood [K]
Tt temperature of solid tissue [K]
w axial Hagen–Poiseuille steady parabolic velocity

[mm s−1] in Eq. (4)
W axial velocity [mm s−1] in Eq. (6)
�W averaged velocity [mm s−1] in Eq. (9) and Table 1
Wb blood perfusion rate of solid tissue [kg m−3 s−1],

Wb = 0.5 kg m−3 s−1

wbt blood perfusion rate of solid tumor tissue [kg m−3 s−1],
wbt ¼ 0–20 kg m−3 s−1

z distance along the z-axis [mm]
z1 lower boundary limit of the heated solid tumor in the z

direction [mm], z1 = 5 mm
z2 upper boundary limit of the heated solid tumor in the z

direction [mm], z2 = 15 mm
zmax upper boundary limit of the computational domain in

the z direction [mm], zmax = 100 mm

Greek symbols
α Womersley number, α ¼ r0ffiffiffiffi

μ
ρω

p
μ dynamic viscosity of blood [kg m−1 s−1],

μ = 0.004 kg m−3 s−1

ρ density [kg m−3]
ρb density of blood [kg m−3], ρb = 1050 kg m−3

ρt density of solid tissue/tumor tissue [kg m−3],
ρb = 1050 kg m−3

τ thermal relaxation time [s]
ω angular frequency of heart beating [s−1]
Ψ interface between the blood vessel and tissue in

Eqs. (17) and (18)

Subscripts
b blood
s solid tissue
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motion under a pressure gradientwith a periodic function of time. Rohlf
and Tenti used the techniques of dimensional analysis to investigate the
meaning of the Womersley number for pulsatile blood flow in small
vessels [21]. Moreover, Craciunescu and Clegg studied the effect of pul-
satile blood velocities on bio-heat transfer in a straight rigid blood vessel
[22]. These researchers demonstrated that the velocity pulsations of
thermally terminal arteries (0.04–1 mm) have a small influence on
the temperature distribution. Nevertheless, these researchers only fo-
cused on the heat transfer inside a single blood vessel and did not con-
sider the thermal interaction between the pulsatile blood flow and its
surrounding perfused tissue. Furthermore, Horng and his colleagues in-
vestigated the effects of pulsatile blood flow on temperature distribu-
tions but ignored the effective thermal conductivity of the perfused
tissue (i.e., the enhancement of thermal conduction in the tissue due
to blood perfusion within living tissues) [23]. These researchers also
found that pulsatile blood flowwith large pulsation amplitudesmay ex-
hibit a downstream two-peak behavior in the thermal dose contour in
middle-sized blood vessels with diameters between 0.6 and 1 mm.
Thus, pulsatile blood flow is an important factor in thermal therapies.

The concept of the effective thermal conductivity of tissue, which is
used to describe the enhancement in the thermal conductivity due to
the microenvironment blood perfusion in living tissues, has been used
by some investigators in the field of thermal physiology [17,24–27].
These authors have noted that blood perfusion can affect the thermal
conductivity of the tissue. Crezee and Lagendijk experimentally demon-
strated the relationship among the effective thermal conductivity of tis-
sue, the thermal conductivity of tissue, and the blood perfusion rate
[28]. Here, we not only consider this influence of the effective tissue
thermal conductivity but also incorporate this factor into the wave
bio-heat transfer model.

The thermal relaxation time of a biological tissue is widely discussed
by several studies [6,29–32]. The thermal relaxation time of biological
tissue can describe the response between the heat flux and the temper-
ature gradient. Furthermore, the thermal relaxation time illustrates the
time lag between the heatflux and the temperature gradient.Wang and
Fan suggested that the heterogeneous and non-isotropic nature of a bi-
ological tissue normally yields a strong non-instantaneous response be-
tween the heat flux and the temperature gradient in non-equilibrium
heat transport [30]. Mitra and colleagues measured the thermal relaxa-
tion time τ of processed meat (Bologna) and reported that τ was ap-
proximately 16 s [33]. Because the heat conduction term in the
Pennes model (see Eq. (1)) is based on Fourier's law of heat conduction
(Eq. (2)), we used a modified unsteady heat conduction equation
(Eq. (3)), which was formulated by Cattaneo [34] and Vernotte [35],
to replace the heat conduction term in Fourier's law as follows:

ρt ct
∂T
∂t ¼ ∇ � q r!; t

� �h i
−wb cb T−Tað Þ þ Qm þ Q : ð1Þ

Fourier's law of heat conduction is the following:

q r!; t
� �

¼ −kt∇T r!; t
� �

: ð2Þ

The modified unsteady heat conduction is the following:

q r!; t
� �

þ τ
∂q r!; t
� �
∂t ¼ −kt∇T r!; t

� �
; ð3Þ

where τ is the thermal relaxation time.
Roetzel et al. [36] experimentally showed that the thermal relaxa-

tion time τ was approximately 1.77 s in inhomogeneous materials
with a hyperbolic thermal propagation behavior. Zhang found that the
dual-phase lag phenomenon ismore pronounced in a large blood vessel
[6]. Based on his study [6], we used a thermal relaxation time ranging
from 0.464 to 6.825 s in our numerical simulations. In addition, Shih
and coworkers demonstrated that the thermal wave characteristics



Table 1
Blood vessel parameters used in the simulations [18].

Diameter (mm) Average blood velocity in tumor (w) (mm s−1)

1.0 8
1.4 10.5
2.0 20
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(i.e., the thermal relaxation time of biological tissues) cause a delay in
the appearance of the peak temperature during thermal therapies
[31]. These studies show that the thermal relaxation time can affect
the temperature distribution under different heating conditions. There-
fore, it is important to understand the coupled effects of effective tissue
thermal conductivity, the thermal wave characteristics, and the pulsa-
tile blood flow during thermal treatments.

2. The physical model and numerical methods

The physical model used in this study is illustrated in Fig. 1. As
presented in Fig. 1, we consider a cylindrical cancer tumor tissue
embedded in a healthy blood perfused tissue with an axisymmetric
geometric configuration. The tumor tissue is localized close to a ther-
mally significant blood vessel (i.e., larger than 200 μm in diameter).
Heating a tumor tissue adjacent to a thermally significant blood ves-
sel with pulsatile blood flow can be modeled by a conjugate problem
containing a blood-perfused solid-volume (i.e., a tumor and its sur-
rounding healthy tissue) and a liquid-volume (i.e., a blood vessel).
This model contains three components: a solid tumor, the healthy
blood perfused tissue, and a rigid thermally significant blood vessel
with pulsatile blood flow. In our numerical simulations, we also con-
sider the thermal properties of the tissue, such as the effective ther-
mal conductivity of the tissue due to blood perfusion, the thermal
relaxation time of the blood-perfused solid tissue due to the finite
speed in the living tissue, and the pulsatile blood flow pattern in
the thermally significant blood vessel due to the heart beat.

For the blood-perfused solid-volume tissues, we not only used the
wave bio-heat transfer equation, i.e., the Pennes bio-heat equation
modified with the Cattaneo–Vernotte formula, to simulate the heat
Fig. 1. Geometric configuration of pulsatile blood flow in blood-perfused tissue solid tumor tiss
ment target (i.e., the heating target) was specified as z1 ≤ z ≤ z2, 0 ≤ r ≤ r1, and z1 = 5 mm
blood vessels was denoted r0. In this numerical study, the diameters of thermally significant bl
transfer in a tumor tissue and its surrounding healthy solid tissue
[31,34,35] but also incorporated the effective thermal conductivity of
the tissue to replace the tissue conductivity due to the enhancement
of the thermal conductivity induced by blood perfusion in living tissues
[17,28]. For the liquid-volume blood vessel, the energy transport
equation was employed, and a periodic pulsatile blood flow pattern
was also considered.

2.1. Velocity profile of pulsatile blood flow in a circular rigid blood vessel

Pulsatile blood flow emanates from the heart and travels
through the arteries. In this study, the pulsatile flowmodel involves
the assumptions that the blood vessel segment is straight, the blood
vessel wall is rigid and impermeable, and the pulsatile blood flow is
an incompressible Newtonian fluid [23]. The pulsatile blood flow
was described by the pulsating frequencies and amplitudes [23].
The axial Hagen–Poiseuille parabolic velocity profile of pulsatile
blood flow passing through an axisymmetric rigid vessel with an
inner radius r0 is as follows [37]:

w r; tð Þ ¼ − r20−r2

4 μ
dp
dz

: ð4Þ

In this equation, the symbol μ is the dynamic viscosity of blood.More-
over, the pulsatile blood flow that emanated from the heart is described
by a variation in the time period. Considering the characteristics of pulsa-
tile blood flow, the pressure gradient (i.e., dpdz, which is the pressure drop
along the blood vessel) in the blood flowing direction does not remain
constant and is described by an additional sinusoidal component in
time. For simplicity, the form of the pressure gradient was assumed to
be a simple harmonic motion in this study. The corresponding pressure
gradient along the z-axis of a blood vessel was modeled as follows:

∂p
∂z ¼ c0 þ c1 sinωt ¼ c0 þ c1 sin 2π fð Þt; ð5Þ

where ω is the angular frequency. Moreover, we defined the coeffi-
cient fac ¼ c1

c0
to characterize the relative pulsation intensity in the
ue. A velocity profile of the pulsatile blood flow in a blood vessel was indicated. The treat-
, z2 = 15 mm, and r1 = 5 mm were considered here. The radius of thermally significant
ood vessels were 1, 1.4, and 2 mm.



Fig. 2. Heating delivery of the power density distribution for heating case III. A heating
power density of Qt = Qb = 25 W cm−3 and a heating duration of th = 4 s were used.
The total energy density delivered was 100 J cm−3.
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blood flow. In other words, the parameter fac was used to describe
the magnitude of the pulsatile blood flow in blood vessels due to
the rhythmic nature of the heartbeat. The axial velocity profile W(r,
t) can be rearranged to obtain the following equation:

W r; tð Þ ¼ r2−r20
4 μ

c0 þ
r2−r20
4 μ

c1 sinωt: ð6Þ

The boundary conditions are axisymmetric at the center and no-slip
on the blood vessel wall (i.e., at the radius r0):

∂W r; tð Þ
∂r ¼ 0 whenr ¼ 0; ð7aÞ

W r; tð Þ ¼ 0whenr ¼ r0: ð7bÞ

Using the above velocity profile of pulsatile blood flow, the average
volume flow rate Q in a blood vessel over the time period T and the
average blood velocity W are shown in Eqs. (8) and (9), respectively.

Q ¼ 1
T

ZT
0

Zr0
0

W r; tð Þ 2πr dr dt ¼ −πr40 c0
8 μ

; ð8Þ

W ¼ Q
π r20

¼ − r20 c0
8 μ

: ð9Þ

From Eq. (9), we obtained the coefficient c0 ¼ − 8 μ W
r20

and rewrote

the fractional coefficient fac ¼ c1
c0
¼ c1

−8 μW

r2
0

¼ − c1 r20
8 μ W

, which represents

the relative intensity of the pulsatile blood flow. Note that the diameters
of thermally significant blood vessels and their associated average ve-
locities were employed and are listed in Table 1 [18]. Finally, the period-
ic velocity profile of pulsatile blood flow in a rigid blood vessel can be
obtained as follows [37]:

W r; tð Þ ¼ 2W 1− r2

r20

 !
þ c1
ρ ω

Re 1−
J0 α

r
r0

i
3
2

� �

J0 α i
3
2

� �
2
664

3
775ei ω t

8>><
>>:

9>>=
>>;; ð10Þ

where α ¼ r0ffiffiffiffiffi
μ

ρ ω

p denotes the Womersley number, ρ is the density of

blood, Re{} represents the real part of a complex data structure,
and J0 is the Bessel function of the first kind of order zero. The
Womersley number α is a dimensionless expression of the pulsatile
flow frequency in relation to viscous effects. As the Womersley
number increases, the velocity profile may appear as two peaks
[23,37,38]. At a Womersley number of approximately 2.568, a previ-
ous study found a two-peak velocity profile in a large blood vessel
[23]. In this study, the diameter of thermally significant blood vessels
was ranged from 1 to 2 mm, and the heart beat frequency was varied
from 1 to 3 Hz [39].
Table 2
Parameters of the five different heating schemes used in the simulations.

Heating scheme I II III IV V

Heating power density Q (W cm−3) 100 50 25 10 5
Heating duration th (s) 1 2 4 10 20
Total heated energy density (J cm−3) 100 100 100 100 100
2.2. Temperature governing equations

The governing equations for the temperature field are shown in
Eqs. (11) for solid tissue (i.e., for a solid tumor tissue and for a solid
healthy perfused tissue) and (12) for blood flow in cylindrical coor-
dinates [23]. Note that the tissue metabolic heat production Qm was
ignored because it is markedly smaller than the heating power in
this study.

ρs cs
∂Ts

∂t ¼ ks
∂2Ts

∂z2
þ 1

r
∂
∂r r

∂Ts

∂r

� �" #
−wb cb Ts−Tað Þ þ Qs r; z; tð Þ ð11Þ

ρb cb
∂Tb

∂t þW r; tð Þ ∂Tb

∂z

� �
¼ kb

∂2Tb

∂z2
þ 1

r
∂
∂r r

∂Tb

∂r

� �" #
þ Qb r; z; tð Þ;ð12Þ

where ρ, c, and k are the density, the specific heat, and the thermal
conductivity of solid blood-perfused tissues, Ts represents the tem-
perature of solid tissues, wb is the blood perfusion rate in solid tis-
sues, Ta is the arterial temperature, which was set to 37 °C, Q(r,z,t)
is the heating power, W(r,t) is the axial velocity of the pulsatile
blood flow, and the subscripts s and b represent the solid tissue and
blood, respectively.

Considering the finite propagation speed in living solid tissue
(i.e., the effect of the thermal relaxation time), we substituted the
heat conduction term in Eq. (11) with the modified unsteady heat
conduction term shown in Eq. (3), rearranged the equation, and ac-
quired the following thermal wave bio-heat equation for solid tis-
sues (Eq. (13)):

ρs cs τ
∂2Ts

∂t2
þ ∂Ts

∂t

 !
¼ ks

∂2Ts

∂z2
þ 1

r
∂
∂r r

∂Ts

∂r

� �" #
þ τ −wb cb

∂Ts

∂t þ ∂Qs r; z; tð Þ
∂t

� �
−wb cb Ts−Tað Þ þ Qs r; z; tð Þ:

ð13Þ

2.3. Effective thermal conductivity equation

For solid blood-perfused tumor tissues, we considered the effec-
tive thermal conductivity of the tissue obtained due to the thermal
enhancement in the thermal conductivity of solid tissues by the
tissue blood perfusion. Based on to the experimental data reported
by Crezee and Lagendijk [17,28], we used the scalar effective
thermal conductivity equation (Eq. (14)) proposed by Crezee and
Lagendijk:

keff ¼ ks 1þ β wbð Þ: ð14Þ

We used the effective thermal conductivity of the solid tumor tissue
to examine the influence of the tumor blood perfusion rate on the



Fig. 3. Temperature distribution evolution and temperature contours for heating scheme II and a thermal relaxation time of τ = 6.825 s. (a) t = 1 s; (b) t = 2 s; (c) t = 4 s;
(d) t = 5.208 s; (e) t = 10 s; (f) t = 20 s; (g) t = 30 s; and (h) t = 60 s. The peak temperature of 62.609 °C occurred at time t = 5.208 s.
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temperature distribution. By replacing the thermal conductivity term of
Eq. (13) by the effective thermal conductivity term of solid tissue,
Eq. (13) was rewritten as follows:

ρs cs τ
∂2Ts

∂t2
þ ∂Ts

∂t

 !
¼ keff

∂2Ts

∂z2
þ 1

r
∂
∂r r

∂Ts

∂r

� �" #
þ τ −wb cb

∂Ts

∂t þ ∂Qs r; z; tð Þ
∂t

� �
−wb cb Ts−Tað Þ þ Qs r; z; tð Þ;

ð15Þ

where the effective thermal conductivity of blood-perfused solid
tissue keff = ks(1 + β wb), and the parameter β is equal to
0.02 kg−1 m3 s−1 [17]. In this equation, the blood perfusion rate
of the solid tumor tissue ranges from 0.5 to 20 kg m−3 s−1 [40],
and the blood perfusion rate of the surrounding normal solid tissue
was 0.5 kg m−3 s−1 in the numerical simulation. Furthermore, the
initial conditions for the blood vessel and the tissue are shown in
Eq. (16). At the interface between the blood vessel and tissue, tem-
perature and heat flux continuity conditions were imposed, as
shown in Eqs. (17) and (18), respectively.

Ts r; z;0ð Þ ¼ Tb r; z;0ð Þ ¼ 37 �C ð16Þ

Ts ¼ Tb atΨ ð17Þ

keff
∂Ts

∂n ¼ kb
∂Tb

∂n atΨ; ð18Þ

where Ψ denotes the interface between the blood vessel, the solid
tumor, and the solid healthy tissue, and n indicates the direction
normal to Ψ. At r = 0, the r-axis-symmetry condition for a blood
vessel was applied:

∂Tb

∂r ¼ 0: ð19Þ
Table 3
Maximum temperatures (in °C) for different thermal relaxation times and heating schemes
fac = 0.5, and d = 2 mm.

Heating case I

Frequency (Hz) Thermal relaxation time τ (s) Maximum tem
f = 1 0 62.493

0.464 62.587
1.756 62.815
6.825 63.107

f = 2 0 62.094
0.464 62.586
1.756 62.813
6.825 63.109
The boundary conditions at r = rmax, z = 0, and z = zmax were all
equal to 37 °C.

Tt ¼ Tb ¼ 37 �C: ð20Þ

In this study, the convective boundary condition of the blood flow at
z = zmax was imposed as follows:

∂Tb

∂t þW r; tð Þ ∂Tb

∂z ¼ 0; z ¼ zmax: ð21Þ

Wepreviously described an approach to prescribe the boundary and
interface conditions for simulations of pulsatile bloodflow [23]. First,we
solved Eqs. (12), (15), and (16) to (21) employing the method of lines
(MOL) and then constructed a discrete form of the temperature
governing Eqs. (12) and (15) using the multi-block Chebyshev
pseudospectral method and the boundary and interface conditions
shown by Eqs. (16) to (21) in space into a semi-discrete system in
time [23,41]. This coupled system consists of ordinary differential equa-
tions (ODEs) in time, which were mainly derived from Eqs. (12) and
(15), and algebraic equations from the boundary and interface condi-
tions (16) to (21). Using the implicit ODE solver ODE15s in MATLAB
(MathWorks, Natick, Massachusetts, U.S.A.) mathematical computing
software, this coupled system of differential-algebraic equations
(DAEs)was solved [23,41]. The blood vessel parameters used in the sim-
ulations are listed in Table 1, and the heating schemes used in this study
are shown in Table 2. Moreover, for example, the delivery of the power
density distribution used in heating case III is shown in Fig. 2.

3. Results and discussion

Fig. 3 demonstrates the development of the temperature distribu-
tions on the r–z plane in heating case II (i.e., the heating power density
Qt = Qb = 50 W cm−3 and the heating duration th = 2 s) with the
at frequencies of 1 Hz and 2 Hz under the following conditions: wb = 0.5 kg m−3 s−1,

II III IV V

perature (°C)
62.412 61.833 60.135 56.763
62.347 62.268 60.865 57.724
62.669 62.401 61.827 58.557
63.043 62.837 62.366 61.233
62.058 61.573 59.263 55.382
62.344 62.269 60.863 57.719
62.718 62.041 61.826 58.553
63.044 62.837 62.366 61.232



Table 4
Times (in seconds) atwhich themaximum temperatures occurred for different thermal relaxation times and heating schemes at frequencies of 1 and 2 Hz under the following conditions:
wb = 0.5 kg m−3 s−1, fac = 0.5, and d = 2 mm.

Heating case I II III IV V

Frequency (Hz) Thermal relaxation time τ (s) Occurrence time of the maximum temperature (s)
f = 1 0 1 2 4 10 20

0.464 1.243 2.987 4.008 9.535 17.938
1.756 3.895 4.340 5.443 9.704 17.951
6.825 7.155 7.627 8.443 12.822 18.784

f = 2 0 1 2 4 10 20
0.464 1.233 2.993 4.003 9.560 17.936
1.756 2.064 4.337 5.430 9.733 17.952
6.825 7.138 7.616 8.476 12.791 18.770
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thermal relaxation time τ = 6.825. Fig. 3(a) through (b) shows that the
temperature increased during the heating time period of 0 to 2 s. Even
after the heating power was turned off, the temperature continued to
increase until it reached the peak temperature of approximately
62.609 °C at approximately t = 5.208 s, as shown in Fig. 3(d). The finite
propagation speed of heat transfer in living tissues explains why the
peak temperature occurred after the heating power was turned off.
Due to heat dissipation by blood perfusion, heat conduction by tissues,
and heat convection cooling by pulsatile blood flow, the temperature
distribution then continuously decayed with time until it became flat,
as shown in Figs. 3(e), (f), 5(g), and 3(h) for times 10, 20, 30, and
60 s, respectively. For heating Scheme III and a heartbeat frequency of
1 Hz, peak temperatures of approximately 62.268 °C, 62.401 °C, and
62.837 °C were obtained at times t = 4.008 s, t = 5.443 s, and
t = 8.443 s for thermal relaxations τ = 0.464 s, τ = 1.756 s, and
τ = 6.825 s, respectively (as shown in Tables 3 and 4). A larger thermal
relaxation time resulted in a more postponed time at which a higher
peak temperature was obtained because the thermal relaxation time
of tissue leads to a finite propagation speed of heat transfer in tissues
rather than an infinite speed [1,6,30–32]. In other words, the heat
flow in solid tissues does not start instantaneously; instead, heat
travels gradually with a time lag after the application of a
temperature gradient. The finite propagation speed of heat transfer in
living tissues is represented by the term

ffiffiffiffiffiffiffiffiffiffiffi
kt

ρt ct τ

q
, where kt is the thermal

conductivity of the tissue, ρt is the density of the tissue, ct is the specific
heat of the tissue, and τ is the thermal relaxation time of solid tissues
[1,23,31].

The peak temperature plays an important role in thermal treatments
because the maximum (i.e., peak) temperature directly dominates the
thermal dose levels [18,23,25,31]. The maximum temperature de-
creases as the heating time period increased with a constant total heat-
ed power energy. For the same total deposited energy density of
Table 5
Effects of the tumor blood perfusion rate of solid tumor tissue on the maximum
temperature and its occurrence time under the following conditions: f = 1 Hz,
wb = 0.5 kg m−3 s−1, α = 1.482, d = 1.4 mm, and τ = 1.756 s.

Case # wbt (kg m−3s−1) Heating
scheme

Peak temperature
(°C)

Occurrence
time (s)

1 0 I 62.577 1.871
2 II 62.365 2.247
3 III 62.136 3.951
4 IV 57.809 8.803
5 V 53.149 16.578
6 0.5 I 62.558 1.862
7 II 62.349 2.226
8 III 62.108 3.947
9 IV 57.747 8.793
10 V 53.082 16.560
11 10 I 62.224 1.701
12 II 62.100 1.994
13 III 61.554 3.882
14 IV 56.657 8.625
15 V 51.930 16.220
100 J cm−3, d = 2 mm, τ = 6.825 s, and f = 2 Hz, themaximum tem-
peratures for heating cases I and Vwere 63.109 and 61.232 °C, and their
occurrence times were approximately t = 7.138 and 18.77 s, respec-
tively. The differentmaximum temperatures obtainedwith thedifferent
heating schemes are listed in Table 3. Due to the finite propagation
speed of heat transfer in living tissues, the peak temperature increases
significantly when the thermal relaxation increases. The data shown
in Table 3 demonstrate that a larger thermal relaxation results in a
higher peak temperature for the same total energy density. Moreover,
the frequency of pulsatile blood flow does not appear to affect themax-
imum temperature in solid tumor tissues. Table 4 shows that the
occurrence time of the peak temperature in heating cases I to III is not
the end of the heating duration but rather occurs after heating due
to the lagging response to the heating source for a finite propaga-
tion speed. For instance, the peak temperature in heating scheme
III (i.e., Qt = Qb = 25 W cm−3, and the heating duration
th = 4 s) occurred at approximately t = 8.443 s for f = 1 Hz,
d = 2 mm, and τ = 6.825 s. In this case, the peak temperature
exhibits a time lag of 4.443 s. However, considering the influence of the
thermal relaxation time (τ = 0.464 s, τ = 1.756 s, and τ = 6.825 s),
the peak temperature occurred before the end of the heating period for
the slow heating scheme case V (i.e., Qt = Qb = 5 W cm−3, and the
heating duration th = 20 s), as shown in Table 4. In addition, the frequen-
cy of the pulsatile blood flow has a small influence on the peak tempera-
ture and its occurrence time, as shown in Tables 3 and 4.

The data shown in Table 5 demonstrate that the tumor blood perfu-
sion rate and the heating scheme altered the level of the peak tempera-
ture and its occurrence time. For rapid heating (i.e., heating scheme I in
Table 2), the time of occurrence of the peak temperature was retarded
due to the thermal relaxation time (see cases #1, #6, and #11), and a
higher tumor blood perfusion also shortened the retarded time, as
shown in cases # 1 and #11. The occurrence time of the peak tempera-
ture was retarded by approximately 0.17 s due to the absence of tumor
blood perfusion, as shown in cases #1 and #11 in Table 5. Furthermore,
the heating scheme significantly affects the occurrence time of the peak
temperature. A slower heating scheme results in a lower peak temper-
ature. For instance, the peak temperatures in the tumor regions in
cases # 6 and # 10 with heating scheme cases I and V were 62.558 °C
and 53.082 °C, respectively. This phenomenon can be explained by the
finding that for the same heating energy a slower heating results in a
lower peak temperature due to a longer time for the cooling effect of
heat conduction and heat sink (i.e., the tumor blood perfusion term).
The occurrence time of the peak temperature was prior to the end of
the heading period in slow heating cases, such as cases #5, #10, and
#15.

The peak temperature in the tumor region decreases as the blood
vessel increases in diameter, as shown in Table 6. In other words, the
diameter of the blood vessel increases as the peak temperature de-
creases. For instance, the peak temperatures in the tumor region
were 62.236 °C and 61.866 °C in blood vessels with diameters of 1
and 2 mm, respectively (cases #1 and #3 in Table 6). Furthermore,
the peak temperature was significantly lower with a higher blood



Table 6
Effects of the blood vessel diameter, heating scheme, and tumor blood perfusion rate on
the peak temperature and its occurrence time under the following conditions: f = 1 Hz,
fac = 0.5, wb = 0.5 kg m−3 − 1, and τ = 1.756 s.

Case # Heating
scheme

wbt
(kg m−3 s−1)

Diameter
(mm)

Peak temperature
(°C)

Occurrence
time (s)

1 III 0 1 62.236 3.981
2 1.4 62.136 3.951
3 2 61.866 3.891
4 0.5 1 62.210 3.978
5 1.4 62.108 3.947
6 2 61.833 3.887
7 10 1 61.700 3.918
8 1.4 61.554 3.882
9 2 61.213 3.819
10 20 1 61.139 3.854
11 1.4 60.958 3.818
12 2 60.569 3.756
13 IV 0 1 58.697 8.951
14 1.4 57.809 8.803
15 2 56.760 8.686
16 0.5 1 58.628 8.940
17 1.4 57.747 8.793
18 2 56.702 8.679
19 10 1 57.425 8.745
20 1.4 56.657 8.625
21 2 55.694 8.566
22 20 1 56.340 8.580
23 1.4 55.669 8.486
24 2 54.791 8.468
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perfusion rate and a slower heating scheme. For example, the peak
temperatures in cases #3 and #24 were 61.866 °C and 54.791 °C, re-
spectively. The difference in the peak temperatures between cases #
3 and #24 was 7.075 °C. Moreover, a blood vessel with a larger diam-
eter exhibits a lower peak temperature and an earlier occurrence
time of the peak temperature. For example, peak temperatures of
62.236, 62.136 °C and 61.866 °C at occurrence times of 3.981,
3.951, and 3.891 s were obtained in cases #1, #2, and #3 (Table 6),
respectively. The influence of the diameter of the blood vessel on
the peak temperature is apparent. The comparison of blood vessels
with diameters of 1 mm and 2 mm under heating scheme III
(Table 2) revealed differences in the peak temperatures of 0.370 °C
and 0.567 °C between cases #1 and #3 and between cases #10 and
#12, respectively. If the heating scheme is slow, the difference in
the peak temperature in blood vessels with different diameters in-
creases. For instance, the temperature differences between cases #13
and #15 and between cases #22 and #24 were 1.937 °C and 1.549 °C,
respectively. This analysis of the influence of the effective thermal con-
ductivity of tumor tissues (i.e., keff ¼ ks 1þ βwbð Þ;where wb ¼ wbt )
showed that the effective thermal conductivity of the tumor tissue
Fig. 4. Peak temperature inside blood vessels with diameters of 1, 1.4, and 2 mm
significantly affects the peak temperature if the blood perfusion rate
of the tumor tissue is high, the diameter of the blood vessel is large,
and the heating scheme is slow, as shown in cases #15 and 24.

Fig. 4 shows that the increase in the temperature profile was higher
and steeper in a smaller blood vessel. For instance, for heating scheme
IV, the temperature profiles inside blood vessels with diameters of 1,
1.4, and 2 mm were 53.731, 47.821, and 41.356 °C, respectively.
Furthermore, the peak temperature was shifted downstream due to
the blood flow. The distance between the location of the peak tempera-
ture and the heating region (i.e., the heating range in the z-axis was
located between 5 and 15 mm, as shown in Fig. 1) increasedwith an in-
crease in the diameter. Moreover, the temperature approximately
45 mm downstream of the z-axis in a blood vessel with a diameter of
2 mm was higher than that obtained in blood vessels with diameters
of 1 and 1.4 mm.

4. Conclusions

The present work demonstrates a numerical analysis of the coupled
effects of effective tissue thermal conductivity, thermal wave character-
istics, and pulsatile blood flow on temperature distributions under
thermal treatments. This coupled model can be used to predict a quan-
titative analysis of the temperature in blood-perfused tissue. The
frequency of the pulsatile bloodflowdue to the heartbeat has a small in-
fluence on the temperature distribution during thermal therapy. For a
slow heating scheme, the effective tissue thermal conductivity of the
tumor tissue significantly affects the peak temperature, particularly for
a higher blood perfusion rate of tumor tissue and a larger blood vessel.
In addition, a larger thermal relaxation time affects the temperature
distribution and postpones the occurrence of the peak temperature
during thermal treatments.
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