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Cylindrical structures are commonly used in offshore engineering, for example, a tension-
leg platform (TLP). Prediction of hydrodynamic loadings on those cylindrical structures is
one of important issues in design of those marine structures. This study aims to provide a
numerical model to simulate fluid-structure interaction around the cylindrical structures and to
estimate those loadings using the direct-forcing immersed boundary method. Oscillatory flows are
considered to simulate the flow caused by progressive waves in shallow water. Virtual forces due
to the existence of those cylindrical structures are distributed in the fluid domain in the established
immersed boundary model. As a results, influence of the marine structure on the fluid flow is
included in the model. Furthermore, hydrodynamic loadings exerted on the marine structure are
determined by the integral of virtual forces according to Newton’s third law. A square array of
four cylinders is considered as the marine structure in this study. Time histories of inline and
lift coefficients are provided in the numerical study. The proposed approach can be useful for
scientists and engineers who would like to understand the interaction of the oscillatory flow with
the cylinder array or to estimate hydrodynamic loading on the array of cylinders.

1. Introduction

Marine structures are commonly utilized to undertake activities in the offshore region. For
example, to obtain oil in the offshore region, a tension-leg platform (TLP) is used. Another
example is the wave power station proposed by a Norwegian company [1]. The TLP frame
is used for the wave power station. A platform with four circular cylinders is used as
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the main frame of the proposed wave power station. Since those marine structures are in the
offshore region, hydrodynamic loading from waves and currents should be considered while
one designs this sort of marine structures. Circular cylinders are often utilized as the frame of
the marine structure, so prediction of the loadings on the circular cylinders is important. The
aim of this study is to establish a numerical model to predict hydrodynamic loading exerted
on those circular cylinders in marine structures.

Oscillatory flows are regarded as the flows due to a progressive wave train in
shallow water, so interaction of oscillatory flows with cylinders have been studied by several
researchers. Sumer and Fredsoe [2] reviewed published papers regarding studies of flow
around a single cylinder in oscillatory flows. Keulegan-Carpenter (KC) number was used
to categorize the flow variations into a variety of flow regimes. The study of hydrodynamic
loadings exerted on a single circular cylinder in oscillatory flows can be found in numerous
publications. Williamson [3] conducted a series of experiments to measure inline force and
lift of an oscillating cylinder. Flows were visualized at various KC numbers. Sarpkaya [4]
provided theoretical and experimental results of inertia coefficient and flow visualization.
Obasaju et al. [5] measured forces on a circular cylinder in oscillating flow. They categorized
the flow variations into asymmetric, the transverse, the diagonal, the third vortex, and the
quasi-steady regimes as KC varied from 4 to 55.

Numerical studies on the force prediction for a single cylinder in oscillatory flows have
been reported in the past two decades. Lin et al. [6] employed a hybrid Lagrangian/Eulerian
discrete vortex method to simulate flow around a circular cylinder in oscillatory flow up
to KC numbers of 30. Iliadis and Anagnostopoulos [7] considered viscous oscillatory flows
interacting with a circular cylinder by solving streamfunction and vorticity formulation of
the Navier-Stokes equation. The finite element method was adopted in their study. They
visualized flow variations using vorticity contours at various KC numbers. The inline and
the transverse forces on the circular cylinder were determined and reported. Zheng and
Dalton [8] utilized the finite difference method to study the interaction between a rectangular
cylinder and oscillatory flows. Variations of flow due to the change of KC number were
visualized in their study. Prediction of forces on the square cylinder was also predicted in
their model. An et al. [9] investigated the oscillatory flow around a circular cylinder at low
KC numbers. Honji vortices were simulated and explained in their study.

Interaction of oscillatory flows with a number of cylinders has been reported in
several papers. Williamson [3] studied flow around a pair of circular cylinders in his flow
visualization experiments. Those two cylinder were either side-by-side or at 45◦. The effect
of gap between two cylinders on flow variation and forces were reported. Chern et al. [10]
simulated oscillatory flows around a pair of side-by-side cylinders up to KC of 15. Phase
diagrams of force components were revealed to observe the route to chaos in the flow. The
relationship between two vortical systems behind cylinders were analyzed. Anagnostopoulos
and Dikarou [11] established a numerical model to simulate viscous oscillatory flow past four
cylinders. The cylinders were in a square arrangement. Inline and transverse forces of the
cylinders were predicted and the relationship among them and KC was given in the study.
Also, the effect of pitch ratio on the viscous oscillatory flows was discussed.

An immersed boundary method which added a virtual force in the momentum
equations to simulate the existence of solid has been receiving more and more attentions.
One of immersed boundary methods is the so-called direct forcing method proposed by
Yusof [12]. The direct forcing method determine a forcing term by calculating the difference
between the interpolated velocities on the boundary points and the desired solid boundary
velocities. As a result, it does not require to fit grids for a complex configuration. A Cartesian
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grid can be used in the direct-forcing immersed boundary method. The principle of the direct
forcingmethod has been adopted and applied to several fluid-structure interactions in Fadlun
et al. [13], Tseng and Ferziger [14], and Verzicco et al. [15]. The present model based on the
direct forcing method was also validated by the uniform flow past cylinders in the work
by Noor et al. [16]. In terms of those studies, it turns out that the direct-forcing immersed
boundary method is able to simulate fluid-solid interactions and to predict hydrodynamic
loadings on cylinders properly.

The aim of this study is to utilize the direct-forcing immersed boundary method
to study the oscillatory flow around a cylinder array in a square arrangement. Since the
geometric configuration of the cylinder array is complex in the flow domain, one can
take the advantage of the propose direct-forcing immersed boundary method to simulate
the oscillating flow with the complex cylinder configuration in Cartesian grids. The other
advantage of the direct-forcing immersed boundary method is the prediction of forces on a
solid immersed in fluids. The virtual force in the model can be used to determine forces. It
is common that forces on a single cylinder in an oscillatory flow are divided to two parts,
the drag and inertia forces (see Williamson [3] and Sarpkaya [4]). Nevertheless, the resultant
forces of the cylinder in this study can be calculated by the integral of the virtual force in the
solid region. Consequently, the oscillatory flow interacting with the cylinder array and the
hydrodynamic loadings on the cylinder array can be obtained using the proposed model.

2. Mathematical Formulae and Numerical Model

In the present work, the direct forcing method is used to establish the proposed immersed
boundary method. A virtual force is added to the incompressible Navier-Stokes equations in
order to accommodate the interaction between solids and fluids. A solid body is identified by
a volume-of-body function η which denotes a fraction of solid within a cell. For a cell full of
solids, η is equal to 1 while it becomes 0 for a cell full of fluids. It is fractional in a boundary
cell which consists of solids and fluids both.

2.1. Equations of Fluid Motion

An incompressible fluid is considered in the study. The motion of fluids should satisfy the
conservation laws of mass and momentum. Mathematically, those physical laws can be
denoted in dimensionless form and shown as

∇ · u = 0, (2.1)

∂u
∂t

+∇ · (uu) = −∇p +
1
Re

∇2u + ηf, (2.2)

where u and p are dimensionless velocity and pressure, respectively. Equations (2.1) and
(2.2) are nondimensionalized by the characteristic velocity Um which is the amplitude of the
oscillating velocity and the characteristic lengthDwhich is the diameter of a circular cylinder.
Meanwhile, time is nondimensionalized by the characteristic time D/Um. Re is Reynolds
number and defined by UmD/ν, where ν is kinematic viscosity. The proposed immersed
boundary model adds the virtual force f to include the effect of solid in the viscous flow.
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The momentum equation (2.2) is solved by three steps. First, the velocity is stepped
from themth time level to the first intermediate level u∗ by solving (2.2)without the pressure
gradient and virtual force at the beginning of each time step. This step is implemented by the
following formula:

u∗ − um

Δt
= Sm, (2.3)

where S includes the convective and diffusive terms of (2.2). Apparently, the first interme-
diate velocity u∗ in (2.3) does not satisfy (2.1), so u∗ is marched to the second intermediate
velocity u∗∗ by including the pressure gradient,

u∗∗ − u∗

Δt
= −∇pm+1/2, (2.4)

at the second step. Taking the divergence of (2.4) gives

∇ · u∗∗ − ∇ · u∗

Δt
= −∇2pm+1/2. (2.5)

In principle, the second intermediate velocity u∗∗ should satisfy the continuity equation, that
is,

∇ · u∗∗ = 0. (2.6)

Substitution of (2.6) to (2.5) results in the Poisson equation of pressure:

∇2pm+1/2 =
1
Δt

∇ · u∗. (2.7)

Once (2.7) is solved, u∗∗ will be obtained by (2.4). So far, the effect of solid on the viscous
fluid flow has not been included. The virtual force f caused by a solid should be involved at
the third step, so u∗∗ is updated to the (m+ 1)th time level by imposing the virtual force term,
that is,

um+1 − u∗∗

Δt
= ηfm+1. (2.8)

The dimensionless virtual force f reveals the existence of a force to hold or to drive a solid
body which is either stationary or moving. Given that the velocity of a solid is us and may
be not the same as the calculated velocity u∗∗, f acting on the solid will have to ensure that
the fluid velocity um+1 is equal to the solid velocity us at the (m + 1)th time step, that is,
um+1 = um+1

s . Hence, the virtual force is defined as the rate of momentum change of a solid
body and proportional to the difference between the solid velocity at the (m + 1)th time step
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and the fluid velocity at the mth time step. The force exists at the fluid domain, where the
solid body is immersed and zero elsewhere. Furthermore, it can be simply written as

fm+1 =
um+1 − u∗∗

Δt
=

um+1
s − u∗∗

Δt
. (2.9)

Presumably, cylinders are fixed so us is always zero for all cylinders.

2.2. Oscillatory Flow Boundary Condition

Oscillatory flows are considered in this study. Transient velocity boundary conditions are
imposed at four boundaries of the computational domain to simulate oscillatory flows.
Consider an oscillatory flow of dimensionless period T . The dimensionless horizontal
velocity component of the oscillatory flow varies according to the condition

u = sin
(
2πt
T

)
. (2.10)

This boundary condition has been used by Zheng and Dalton [8] and Chern et al. [10] for
simulations of oscillatory flows with square cylinders. The dimensionless vertical velocity
component of the oscillatory flow at four boundaries of the computational domain is set as
zero during simulations.

2.3. Calculation of Hydrodynamic Force on Cylinder

The integration of the virtual force will be a good approximation of the resultant
dimensionless force exerted on a single circular cylinder,

F = −
∫ ∫

Ω
ηfdA, (2.11)

where F is the resultant hydrodynamic force vector andA is the area occupied by the circular
cylinder. The inline force coefficient Cf in the oscillatory flow direction can be denoted as

Cf = −2Fx (2.12)

and the life or transverse force coefficient Cl can be determined by

Cl = −2Fy. (2.13)

2.4. Numerical Procedure to Predict Fluid-Solid Interaction

The numerical procedure to predict viscous oscillatory flows and to trace the falling object at
each time step can be summarized in the following steps.
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Figure 1: Schematic of interaction of an oscillatory flow with a single circular cylinder.

(1) Determine η through the positions and diameters of cylinders at the first time step.

(2) Calculate u∗ via (2.3).

(3) Solve the pressure Poisson equation (2.7) and advance to u∗∗ via (2.4).

(4) Compute the virtual force required via (2.9).

(5) Determine the velocity via (2.8) and back to Step 2 and for the next time step.

Uniform Cartesian grids are adopted in this study. 250 × 250 and 430 × 430 grids
are used for cases for a single cylinder and four cylinders, respectively. The finite volume
method is used to solve the momentum equations. The advective scheme is discretized by
the so-called third QUICK scheme. The Adams-Bashforth scheme is used for the temporal
derivative. The dimensionless time increment Δt is set as 10−4 which satisfies the CFL
condition so the stability can be retained in the model. The total dimensionless time for
simulations is 230. It takes about 2 and half days for each simulation of the 2-D oscillatory
flow around a single cylinder at a PC cluster consisting of Intel Xeon CPUs.

3. Results and Discussion

3.1. Validation of Numerical Model

Although the proposed numerical immersed boundary model was validated in our previous
study (Noor et al. [16]) which considered a uniform past circular cylinders, it will be
validated by the study of the interaction of oscillatory flow with a single circular cylinder
again. Figure 1 shows the schematic of the benchmark test problem. Consider a circular
cylinder of diameter D in a fluid domain. The oscillatory flow is featured by Keulegan-
Carpenter (KC) number which is determined by the formula UmT/D. Cases at KC = 2
and 10 and Re = 200 are simulated in the validation test. Figure 2 presents the evolution
of vorticity contours during a cycle at KC = 2. It is found that a pair of symmetric vortices
appearing in two sides of the cylinder alternatively due to the change of flow direction. The
results agree with Iliadis and Anagnostopoulos’ study [7]. Furthermore, the development
of the symmetric wake in half a cycle is calculated and shown in Figure 3. The wake is
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Figure 2: Evolution of vorticity distribution at KC = 2 and Re = 200. Dash lines refer to the negative vorticity
contours.

elongated as time increases. The predicted wake length in the model is very close to Iliadis
and Anagnostopoulos’ result. As KC increases, the symmetry in the pair of vortices breaks,
Figure 4 shows the evolution of shedding vortices in a cycle. It is found that vortices are
not attached to the cylinder anymore. They shed from the cylinder and travel downstream.
Finally, they are damped in the far field region. In addition, the inline force coefficient Cf

is estimated using the proposed approach in the previous subsection. The time histories of
Cf at KC = 2 and 10 are shown in Figures 5(a) and 5(b), respectively. It is found that Cf

reaches a maximum while the oscillatory flow changes its direction. The comparison of the
predicted Cf reveals that the present immersed boundary model can simulate the interaction
of oscillatory flow with a single cylinder and the hydrodynamic loading reasonably.

3.2. Interaction of Oscillatory Flow with Cylinder Array

A cylinder array is commonly used in marine structures. For example, a tension-leg
platform which is normally used for the offshore production of oil or gas consists of a
group of vertical cylinders as mentioned in Introduction. Those cylinders have to endure
hydrodynamic loadings from waves and currents. To design those cylindrical structures,
stress distribution caused by those hydrodynamic loadings must be provided in advance.
Hence, the hydrodynamic loadings due to oscillatory flows are calculated using the current
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Figure 4: Evolution of vorticity distribution at KC = 10 and Re = 200. Dash lines refer to the negative
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Figure 6: Schematic of interaction of an oscillatory flow with a cylinder array. P/D = 2.

immersed boundary model. An array of four circular cylinders are considered in this study
as shown in Figure 6. Four cylinders are allocated in a square arrangement. The distance
between two centers of two adjacent cylinders is denoted as P . The pitch ratio P/D is one
of parameters to affect the hydrodynamic behavior around those cylinders. To simplify the
problem, P/D is set as 2 in this study. Also, Re is fixed at 200 in this subsection. To investigate
the effect of KC number, three various KC numbers 2, 5, and 10 are considered to observe its
effect on the oscillatory flow. Results are illustrated in the following subsections.
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Figure 7: Snapshots of vorticity contours in the oscillatory flow interacting with four cylinders during a
cycle at KC = 2 and Re = 200.

3.2.1. Evolution of Four Vortical Systems

Figure 7 shows the evolution of vorticity contours around four cylinders in a cycle. Each
cylinder has its symmetric vortical system as mentioned in the case with a single cylinder.
Those vortical systems do not interact with others since P/D of 2 is wide. Nevertheless, the
symmetry in those vortical systems vanishes as KC is increased to 5. Figure 8 presents the
snapshots of vorticity contours for the 11th cycle at KC = 5. It is found that the gap flow
influence the vortical systems, so vortices are pushed downstream. The vortices disappear
after they leave from the cylinders. Figure 9 presents vorticity contours at KC = 10. It is found
that vortices become irregular and shed from cylinders. They are not damped until they travel
far away from cylinders.

3.2.2. Variation of Cf with KC

Prediction of hydrodynamic forces are important for the design of the cylinder array. To
understand the variation of those forces with respect to KC, the time histories of Cf of the
first cylinder as shown in Figure 6 are provided. Figure 10 demonstrates the time histories of
Cf . Cf behaves sinusoidaly at KC = 2 as shown in Figure 10(a). It looks just like the case with
a single cylinder. As KC increases to 5, the sinusoidal form of Cf is not regular any more as
shown in Figure 10(b). Also, the amplitude of Cf decreases from 10 to 4 at KC = 5. As KC
increases to 10, Cf becomes more irregular and also the amplitude decreases again.
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Figure 8: Snapshots of vorticity contours in the oscillatory flow interacting with four cylinders during a
cycle at KC = 5 and Re = 200.

3.2.3. Variation of Cl with KC

The other force component is along the transverse direction. It is called the life or transverse
force. When KC = 2, as Figure 7 shows four vortical systems are symmetric during a cycle.
As a result, lifts or transverse forces on four cylinders are very little in comparison with Cf .
Nevertheless, as KC increases to 5, the vortical systems are not symmetric. The transverse
forces on cylinders are obvious. Figure 11 shows time histories of Cl at KC = 5 and 10. Cl at
KC = 5 is not regular is smaller than Cf . While KC increases to 10, the frequency of variation
of Cl becomes faster. Another feature at KC = 10 is those spikes. They do not appear regularly
but randomly. This phenomenon does not occur in Cf .

3.2.4. Phase Diagram of Cf versus Cl

The resultant hydrodynamic forces can be regarded as the responses of the vortical systems
around those four cylinders. Trajectories of Cf versus Cl at successive instants reveal the
states of the vortical systems. Figure 12 shows phase diagrams of Cf and Cl of the first
cylinder at various KC numbers. While KC = 2, Figure 12(a) shows that the vortical system
around the first cylinder is almost periodic. Therefore, the trajectory at KC = 2 is close to a
straight line and the vortical system follows the line up and down. As KC increases to 5 and
the transverse force becomes significant, the trajectory as shown in Figure 12(b) looks like a
twisted “8”. Nevertheless, the trajectory shown in Figure 12(c) becomes completely chaotic
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Figure 9: Snapshots of vorticity contours in the oscillatory flow interacting with four cylinders during a
cycle at KC = 10 and Re = 200.

as KC increases to 10. In terms of those sub figures, it illustrates the way of the vortical system
changes from a periodic state to a chaotic state due to the increase of KC.

4. Conclusions

A direct forcing immersed boundary model has been established to predict interactions
between oscillatory flows with a cylinder array. The proposed immersed boundary model
was validated by an oscillating flow interacting with a single cylinder at Keulegan-Carpenter
(KC) number = 2 and 10 and Reynolds number = 200. The development of the symmetric
wake predicted by the proposed model agreed with other researchers’ study at KC = 2.
Meanwhile, time histories of the inline force coefficient Cf at KC = 2 and 10 were compared
with the same published study. Good agreements were found between the present results and
the other study. The established numerical model was further applied to simulate oscillatory
flows around four cylinders at moderate KC numbers. As KC was 2, the symmetry was
found in all vortical systems around four cylinders. The resultant Cf of one of cylinders was
sinusoidal and the lift coefficient Cl was very small at KC = 2. As KC increased to 5, the
symmetry in vortical systems broke. Cf became irregular and its amplitude decreased and
Cl was significant. While KC was 10, the vortical systems were more complex. The change of
Cf became more frequent and a number of spikes were found in Cl. Phase diagrams of Cf

versus Cl were used to demonstrate the state vortical system around the cylinder. It showed
that the trajectory changed from a straight line to a twisted “8” as KC changed from 2 to 5.
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Figure 10: Time histories of Cf of the first cylinder at KC = 2, 5, and 10.
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Figure 11: Time histories of Cl of the first cylinder at KC = 5 and 10.

Finally, when KCwas 10, the trajectory in the phase diagramwas completely chaotic. It meant
that the vortical system around the cylinder was completely disordered.
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Figure 12: Phase diagrams of Cf versus Cl of the first cylinder at KC = 2, 5, and 10.

Nomenclatures

Latin Symbols

Cf : Inline force coefficient
Cl: Lift coefficient
D: Diameter of cylinder
f: Dimensionless virtual force
F: Total dimensionless force acting on solids
KC: Keulegan-Carpenter number, UmT/D
P : Dimensionless distance between centers of two adjacent cylinders
L: Dimensionless length of wake
p: Dimensionless pressure
R: Dimensionless radius of cylinder
Re: Reynolds number, UmD/ν
T : Dimensionless period of oscillating velocity
t: Dimensionless time
Δt: Dimensionless time increment
Um: Amplitude of oscillating velocity, m · s−1
u(u, v): Dimensionless velocity
x, y: Dimensionless horizontal and vertical cartesian coordinates.
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Greek Symbols

η: The volume of solid function
ν: Kinematic viscosity of fluid, m2 · s−1.

Subscripts

s: Solid.

Superscripts

m: Time step level
∗: Intermediate time step level.

Acknowledgment

The authors would like to express their gratitude for the financial support from National
Science Council, Taiwan (Grant no.: NSC 100-2212-E-011-163).

References

[1] “Langlee Wave Power,” http://www.langlee.no/.
[2] B. M. Sumer and J. Fredsoe, Hydrodynamics Around Cylindrical Structures, chapter 3, World Scientific

Publishing, Singapore, 1997.
[3] C. H. K. Williamson, “Sinusoidal flow relative to circular cylinders,” Journal of Fluid Mechanics, vol.

155, pp. 141–174, 1985.
[4] T. Sarpkaya, “Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter

numbers,” Journal of Fluid Mechanics, vol. 165, pp. 61–71, 1986.
[5] E. D. Obasaju, P. W. Bearman, and J. M. R. Graham, “A study of forces, circulation and vortex patterns

around a circular cylinder in oscillating flow,” Journal of Fluid Mechanics, vol. 196, pp. 467–494, 1988.
[6] X.W. Lin, P. W. Bearman, and J. M. R. Graham, “A numerical study of oscillatory flow about a circular

cylinder for low values of beta parameter,” Journal of Fluids and Structures, vol. 10, no. 5, pp. 501–526,
1996.

[7] G. Iliadis and P. Anagnostopoulos, “Viscous oscillatory flow around a circular cylinder at low
Keulegan-Carpenter numbers and frequency parameters,” International Journal for Numerical Methods
in Fluids, vol. 26, no. 4, pp. 403–442, 1998.

[8] W. Zheng and C. Dalton, “Numerical prediction of force on rectangular cylinders in oscillating
viscous flow,” Journal of Fluids and Structures, vol. 13, no. 2, pp. 225–249, 1999.

[9] H. An, L. Cheng, and M. Zhao, “Direct numerical simulation of oscillatory flow around a circular
cylinder at low Keulegan-Carpenter number,” Journal of Fluid Mechanics, vol. 666, pp. 77–103, 2011.

[10] M. J. Chern, P. Rajesh Kanna, Y. J. Lu, I. C. Cheng, and S. C. Chang, “A CFD study of the interaction
of oscillatory flows with a pair of side-by-side cylinders,” Journal of Fluids and Structures, vol. 26, no.
4, pp. 626–643, 2010.

[11] P. Anagnostopoulos and C. Dikarou, “Numerical simulation of viscous oscillatory flow past four
cylinders in square arrangement,” Journal of Fluids and Structures, vol. 27, no. 2, pp. 212–232, 2011.

[12] J. M. Yusof, Interaction of massive particles with turbulence [Ph.D. thesis], Department of Mechanical and
Aerospace Engineering, Cornell University, Ithaca, NY, USA, 1996.

[13] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. M. Yusof, “Combined immersed-boundary finite-
differencemethods for three-dimensional complex flow simulations,” Journal of Computational Physics,
vol. 161, no. 1, pp. 35–60, 2000.

[14] Y. H. Tseng and J. H. Ferziger, “A ghost-cell immersed boundary method for flow in complex
geometry,” Journal of Computational Physics, vol. 192, no. 2, pp. 593–623, 2003.



16 Journal of Applied Mathematics

[15] R. Verzicco, J. M. Yusof, P. Orlandi, and D. Haworth, “Large eddy simulation in complex geometric
configurations using boundary body forces,” American Institute of Aeronautics and Astronautics Journal,
vol. 38, no. 3, pp. 427–433, 2000.

[16] D. Z. Noor, M. J. Chern, and T. L. Horng, “An immersed boundary method to solve fluid-solid inter-
action problems,” Computational Mechanics, vol. 44, no. 4, pp. 447–453, 2009.


