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Abstract

This paper presents a direct Poisson solver based on an error minimized Chebyshev pseudospectral penalty
formulation for problems defined on rectangular domains. The current method is based on eigenvalue-
eigenvector matrix diagonalization methods developed long time before and elaborated by Chen, Su, and
Shizgal (2000) [1]. However, this kind of fast Poisson solvers utilizing pseudospectral discretization is usually
restricted to periodic or Dirichlet boundary conditions only for efficient implementation. Enforcement of
Neumann or Robin boundary conditions requests messy row operations that reduces the easiness of operation.
The current method can easily accommodate all three types of boundary conditions: Dirichlet, Neumann, and
Robin boundary conditions. The reason for that is that it employs penalty method. Besides, the penalty
parameters are determined analytically such that the discrete L2 error is minimized. 2D and 3D numerical
experiments are conducted and the results show that the penalty scheme computes numerical solutions with
better accuracy, compared to the traditional approaches with boundary conditions enforced strongly. The
current method can be extended to generally linear 2nd order elliptic-type partial differential boundary value
problems with arbitrary coefficients with only one restriction that those arbitrary coefficients must be able to be
separable to coordinate-variable functions. Under this generalization, this method can be surely applied to solve
famous Helmholtz equation too. As to computing efficiency, the asymptotic operation count for current method
in 3D case is 2NxNyNz (Nx + Ny + Nz), and its counterpart for 2D case is 2NxXNy(Nx + Ny). Obviously, it is
far superior to method expressing Laplace operator in tensor product. For an FFT-based method the asymptotic
operation count is basically 2NxNyNz (log(Nx) + log(Ny) + log(Nz)) for 3D case, and 2NxNy(log(Nx) +
log(Ny)) for 2D case. Indeed, the current method which relies on extensive matrix-matrix multiplications is
inferior to FFT-based methods in theory. However, this inferiority also depends on hardware. For moderate NXx,
Ny, and Nz, it is not necessarily inferior in computers nowadays. Of course, for large grid resolution, FFTbased
methods remain the the best choice if handling boundary conditions is not a problem.

[1] H. CHEN AND Y. SU AND B.D. SHIZGAL. A Direct Spectral Collocation Poisson Solver in Polar and
Cylinder Coordinates. J. Comput. Phys. 160 (2000) 453-469.



Approximation by Chebyshev polynomials
(1) Suppose that u(x) is approximated by a truncated series of Chebyshev

N
polynomials as u(x)=> 0T (x),
k=0

where T, (x) denotes Chebyshev polynomial and u, expansion coefficient.
(2) Choosing the Chebyshev Gauss-Lobatto collocations points:
Jr

x; =cos-—, ]=0,1...,N,
N

(3) We can form the following discrete transform and inverse transform

k'Y J=0 Cj
N ~
u(xj):Zuka(xJ )
k=0
B 2, ]=0,N B 2, k=0N
where C; = . and C, = .
1, otherwise 1, otherwise



(4) For pseudospectral method, interpolating u(x) at the collocation
points x;, J=0,1,...,N.

(5) Hence, u(x) can be also expressed as

=gLN,k(X)U(Xk

where L, , (X) is the Lagrange interpolating polynomial defined as

LN,k(X)=ﬁ X=X _ (= D" (1-x)°T, (x)

o X — X CN?(X—x)
I=k

2

(6) Then, the derivatives (:I—;J((Xj) and STS(XJ.) can be approximated as

2

d N dL d N
)= 200 =55 () and <o (%) = Su0n) =g ;)
where d:’:("‘ (xj) Is usually referred to the Chebyshev collocation

derivative matrix.



Chebyshev Collocation Derivative Matrix

(1) The entries of first-order Chebyshev collocation derivative matrix with respect
to X, based on Gauss-Lobatto collocation points, are given as below:

2NZ +1 2N2 +1
(DX)oo - 6 (DX)NX,NX - 6
—X; _ 2 fori=0o0rN,,
(DX)”ZZ(l—xz)' j=12,...,N -1, where ¢, = L otherwise
j
i+ ]
(D,), = WYL andi j=012 N,

¢ (% —x)

here x; = cos [Ij\l—ﬂ] 1=0,1,2,...,N, are Chebyshev Gauss-Lobatto collocation

X

points. Also, there is a version for avoiding round-off error when N, is large.
(W. Don and S. Solomonoff in SIAM J. Sci. Comp. Vol. 6, pp. 1253--1268 (1994))

(2) D,, = DZ.

XX



Chebyshev Gauss-Lobatto collocation mesh

o=l =12
oy
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Example: 1D Poisson equation (PE) with Dirichlet BC’s

(1) Consider an 1D Poisson equation with Dirichlet boundary conditions as
follows,
u,=f, xe[-11], u(-1)=g_andu(l)=g

XX +"

(2) Discretization: ( The first/last row/column of D,, can be stripped
due to Dirichlet boundary conditions.)

—_
O
%
P&
S~—
Il

where ([‘)XX)ij =(Dy), s i J=12,...,N, ~1.

(3) Exponential order of convergence.



Example: 2D Poisson equation with Dirichlet BC’s

(1) Consider a 2D Poisson problem with Dirichlet boundary conditions in a rectangular
domain shown as follows,

u, +u, =f, (xy)e[-L1]x[-1,
u(=Ly)=gx(y). u(Ly)=gi(y),
(% -1)= g (x). u(x1)= g7 (x).

(2) Discretizing (N, +1)x(N,+1) collocation points in the x and y directions for u

1],

respectively, and keeping u in the shape of a rectangular matrix:
D,u +(Dxxut)t =D, u+uD} = f, with u, f e R™ ™™,
(3) The first and last rows and columns of D,, and D,, can be stripped due to
Dirichlet BCs, then we can obtain

D, U+UD}, = f, where T, f e R™ ™,
where (EW).

_J_ (Dw)ij,i,jzl,z ..... N, -1, (Ijxx)ij:(DXX)ij,i,jzl,Z ..... N, -1,
fi = T3 =(Dy ), (9706))=(Dyy ), (970¢)) (D) o (8X(%)) =(Ds) , (97 (w1)), with
i=12,...,N,-L j=12..,N, -1

X
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Diagonalization via Eigenvector

A

(1) D,e, = 4e, =D, Y =YA, where A =

yyy,

12

A
Ny-1 |

here 4 and e, represent the eigenvalue and eigenvector of D,

and Y = [ y1 €y ,eyNle.
(2) Similarly,

D! e =08, = D! X = XX, where X =

XXX




D, U+UD;, = f

D, UX +UD, X = fX

D,,UX +UXX = X

D,,YY '0X +UXZ = fX

YAY UX +0X X = X

AYTOX +Y TOXZ =Y X

AV +VX =B whereV =Y X and B=Y *fX

ie. (A4v; +vio;)=by, =12, N, -landj=12,..,N, -1
b..

i
A+o;

n.o Vij —

where v; and b; are the elements of V and B, respectively.

Once V is solved, T can be recovered from U = YVX . The diagonalization
method so far only works easily for Dirichlet BC's. For non-Dirichlet BC's,
such as Neumann and Robin BC's, it requests messy row operations.



Example: 1D Poisson equation with BC’s involving derivative

(1) Consider an 1D Poisson equation with Dirichlet/Neumann boundary
conditions as follows,
u,=f, xe[-11], u(-1)=g_andu,(1)=g,.
(2) Stripping off first/last row/column of D,, no longer works.
(3) Discretization:

B B _u_O_ _g_+_ _ .
L h Py
(Iﬁxx)__ :|=| ¢ |, whereD, = (Dy); ,
ij
el o
_ . ™ _ g _ _ . J(Ny+1)x(N, +1)

here I, ; stands for the last row of the (N, +1)x(N, +1)identity matrix.



Example: 2D Poisson equation with BC’s involving derivative
(1) Consider a 2D Poisson equation with Dirichlet/Neumann boundary conditions as follows,
Uy, +U,, = f, (x,y)e[-11]x[-11],
u(-Ly)=9"(y), u (Ly)=g:(y).
u(%-1)= 0" (%), u, (x1)=g! (x).
(2) Following the idea of 1D case, discretizing (NX+1)><(Ny+1) collocation points in

x and y directions respectively for u, and keeping u in the form of a rectangular matrix:

~

['jyyu +u|§)t(x _ .i:\’ u, f e R(Ny+1)X(NX+l),
(), (D.),
where D, = (DW)ij . Du=| (D),
e _ I
t Ny J(Ny +2)x(N, +1) L M J(Ny +1)x(N, +1)
(grorg) i g’ g’ | gtorg’
BT R
% B =12 N -1
f= : | f; | : here < . S
« | | « j=l,2,...,|\|x—1
___gi___:T __________ _:r___g‘___
X y y y X y
_g+ org- I g- g- I g-or g__(Ny+1)><(Nx+l)



(3) However, using 5x5 matrix as an example, D, u+uD}, = f

will become
~ . . _
Uy U Uty U Uy Ug 1 by U
| |
u, +u, i Au Au Au :uyy+u
u, +u, i Au Au Au iuyy+u
Uy+U ), AU Au . Au_ ju,+u
| |
_u+ux | u,+u U, ,+U U +U | u+u_
[ X y |y y y | 4x y ]
g.orgr 19, 97 9,19 orgy

which is wrong at BC's. How to fix this? Resorting to Kronecker product

| ® I5yy + I5XX ® | is both time and memory consuming.



Diagonalization with Penalty Method

(1) Consider the 2D Poisson equation with all kind of boundary
conditions in a rectangular domain, i.e.,
Biu(+Ly)=0:I(y), Blu(x1)=g}(x),
where
Bl =a; £ /0, B)=a!+p/0,,
and o, B!, o), and g} are specified constants. At least one of «; and
«; must be non-zero for a unique solution to exist.

(2) At this time, we can not strip first/last row/column of D,, and D,

as we did for the case of Dirichlet BCs. We follow the previous idea
but modify the substitution by penalty method shown as belows.



(3) Replace D,, and D, by the following D,, and D,,,, respectively

XX

: : U (N XNy )

_ | (Ny+1)x(Ny +1)
where 77, 7, 7/, and 7’ are the penalty weights, which are usually
large numbers.



(4) Using 5x5 matrix as an example, D, u+uDj, = f will become

Au—7'Bu-7’B/u Au-7z’Blu Au-7z/Bu Au-7’Bu Au-7'B'u-7/B’u

Au—17.Bu AU AU AU Au—7"B’u
Au-7.Bu AU AU AU Au—7*B’u
Au—7:Bu Au AU AU Au—7*B’u

|Au-7;Blu-7z’B’u Au-7/B’u Au-7’B’u Au-7’B’u Au-7z’B’u-7’B’u

f-rigl-lg! f-rlg) -2y f-rlg) f-rgi-7'g)]
f-77g’ f f f f-7'g”

=l f-r*g” f f f f-c'g* |,
f—7°0; f f f f—7°g”

| f-rigl-7'g’ f-olgr f-2'gY f-oYg? f-r¥gX-7Yg) |

which well approximates Au = f with the specified BC's when z's are large enough.



Diagonalization via Eigenvector again

ZO
- A
(1) D,e, =4e, =D, Y =YA where A =

yy y|

AN

y

here 4, and e, represent the eigenvalue and eigenvector of If3yy

and Y = [eyo,eyl,...,eyNy }
(2) Similarly,

XXX

D,&, =0, = DX =XZ whereX =




D,,u+ubj, = f

D,,uX +uDy X = fX

D,,uX +UXZ = X

D,,YY 'uX +uX = fX

YAY "uX +uXz = fX

AY uX +Y uXzT =Y X

AV +VE =B whereV =Y "uX and B=Y *fX

ie. (Av; +ov;)=by, i=01..,N andj=01..,N,,

b.

~.V; =——— where v, and b; are the elements of V and B,
A+o;

respectively.

Once V is solved, u can be recovered from u =YVX ™.



O

O

O

(N, +1)x(N,+1)

(Ny+1)x(Ny +1)

J(N, +1)x(N, +1)






N, i N, ~
(DW )il u|jk +Zuilk (D:(x )Ij + Zu,” (Dt )Ik = Fijk’

N, N, N, _
y y (Dyy) u|jkxjnzk0 + ullk(7 XInZko
k=0 j=0 1=0 k=0 1=0
N N I\Iz Nx
+ZZUIJ|(0 |0 jn :ZZFlijJnZko
j=0 1=0 k=0 j=0

N, N, Ny N, » N, N,
3 (Dyy)” Yo Yo Ui X 10 Zio +ZZu, X, Z,.0.

k=0 j=0 1=0 m=0 k=0 1=0

N, N, N, N,
+Zzuijlxjnzloa)o = ZZ Fic X Lo



N, N,
ZZ YImﬂ“errTlluljk>< anko +Zzul|kx Zkoo-n

k=0 j=0 1=0 k=0 1=0
N, N N, N
T Zzulﬂ X JnZ|Oa)0 = ZZ |:Iij JnZko
j=0 1=0 k=0 j=0
I\Iz Nx Ny I\Iy Nz N
\ \ \ _1 al _1
ZZ A Yot U R 0o + Z,Z,Ym. Ui X10Z 40O,
k=0 j=0 1=0 i=0 k=0 1=0







Error Minimization for Penalty Parameter

(1) Taking 1D PE as example, u”(x) = f (x).
(2) f(x)=-167"sin(47zx), so exact solution u(x) =sin(4rx).
(3) BC's: (a) u(-1) =0, u'(l) =4z, (b) u'(-1) =4z, u(l)+u'(1) =4,

n

25 57

log, (-7 )
log,(c,) log,(t) log, (=)

Figure 1: BC (a), N=16. Figure (2): BC (b), N=16.



Error-Minimized Tau vs. Strongly Enforcement
Strongly-enforced BC Is equivalen to 7 — oo.
Table 1: BC (a)

Present method Strongly enforced BC

L; error L. error L error L. error
16 7.5861e-03 8.2458e—03 8.2730e-01 7.6315e-01
20 8.4171e-05 8.9049e—-05 2.2776e-02 2.1001e-02
24 4.2298e-07 4.4719e-07 2.1196e—04 1.9540e—-04
28 1.1169e-09 1.2001e-09 8.9051e-07 8.2080e-07
32 1.5770e-12 1.6215e—12 1.9692e—-09 1.8149e—-09

Table 2: BC (b)

Present method Strongly enforced BC

L, error [. error L5 error [ error
16 7.7124e-03 8.3458e-03 8.2730e-01 7.6315e-01
20 8.7012e—05 9.1708e—05 2.2776e—-02 2.1001e-02
24 4.4364e-07 4.7063e-07 2.1189e-04 1.9534e-04
28 1.1853e-09 1.2869e—09 8.9054e—-07 8.2082e-07
32 1.7921e-12 1.9433e—12 1.9697e—-09 1.8153e-09




Error-Minimized Tau Can Be Derived

—[m‘? +2(0. + B }2]

T, = ,
| [m3+2(:¢ B ﬂc.ﬂza +B.)(or +B,) — oot H,
g [m3+2:x + B, ]3]
e =
[2(c, +B,)(0- + B.) — 0,0 ]G+ [.1%4—2(0:;,4—_1’3.,}3}}{

C —__ % _B.(2N*-1) B 3, B B.

" N} N*-4) 2N (N*-1) N3 N?2—1)(N* —4) 2N*(N*-1)’
go—__ (D78« DM L (ED7e (1)TR RN -1)
" NN —1)(N®P—4) 2N3(N:-1) - NA(N? —4) 2N (N> - 1)

Details see: Tzyy-Leng Horng and Chun-Hao Teng*, 2012, "An
error minimized pseudospectral penalty direct Poisson solver,"
Journal of Computational Physics, 231(6):2498-25009.



Error-Minimized Tau Can Be Extended
to Higher-Dimension PE

Taking 2D PE as an example,

Au=u, +u, = f(x,y), with BC's

Biu(+Ly)=9:(y), Blu(x+1)=g(x).

There exists a unique set {ux(x, y),u’(x,y), 7 (x,y), f (X, y)} such that
u(x,y)=u*(x,y)+u’(x,y), and f(x,y)=f*(x,y)+ fY(x,y), with
0, u* = f* subjecttoBiu(xly)=gX(y),

0,,u’ = 7, subject to B/u(x,£1)=g/(x),

So we can calculate error-minimized z_ and z, in each direction alone
according to previous formula.



Numerical experiments for 2D PE

(1) Au=f(x,y).

-2.2
2 - -
(2) f(x,y) =-327"sin(4zx)sin(4zy), so eaxct 2.4
. . . . 2.6
solution is u(x, y) =sin(4zx)sin(4ry). L,
n: = ¥
ou(x1 o
] T - 13
(3) BCs: (@) u(xL, y) = MELY) _ azsingany), #
OX 132
ou(x,x1 . 3.4
—( *D) =47xsin(4rzX). s is
oy 0 ki
-3.8
-4
1000 1000
N Present method Strongly enforced BC
L; error L. error L error L. error
16 7.7325e-03 5.2042e-03 1.0911e-01 9.3090e-02
20 9,1325e-05 6.8995e—-05 3.0619e-03 2.5662e—-03
24 4.9615e-07 3.8162e-07 2.8567e—05 2.3930e-05
28 2.2247e-12 1.9539e-12 2.6613e-10 2.2226e—-10
32 7.3045e—14 0.4147e-14 19322e-14 2.3648e—-14
43 4.0532e-14 5.5681e—14 59653e—-14 7.2664e—14
64 8.7292e-14 6.6391e-14 1.0678e—13 1.2695e—13




BC's: (b)u(xl,y)=0, u(x,x1)=0.

N Present method CT cC CG
L; error L. error L. error L., error L. error

16 6.89e—03 5.25e-03 3.33e-02 525e-03 5.22e-03
20 8.54e—05 6.26e—05 7.52e—05

24 4.75e-07 3.76e-07 6.89e—-06 405e—-07

32 2.17e-12 1.78e-12 477e—11 2.87e-12 2.17e-12
40 1.24e—14 2.05e-14 147e—12

48 9.40e—15 1.03e—14 1.90e—12 3.63e-12

b4 3.15e—14 5.05e—14 8.67e—13 3.90e—12 6.11e—15

CT (Chebyshev tau): D.B. Haidvogel, T. Zang, The accurate solution of Poisson’s equation

by expansion in Chebyshev polynomials, J. Comput. Phys. 30 (1979) 167-180.

CC (Chebyshev collocation): U. Ehrenstein, R. Peyret, A Chebyshev collocation method

for the Navier—Stokes equations with application to double-diffusive convection, Int. J.
Numer. Methods fluids 9 (1989) 427-452.

CG (Chebyshev Galerkin): J. Shen, Efficient spectral-Galerkin method Il. Direct solvers of
second and fourth order equations by using Chebyshev polynomials, SIAM J. Sci. Comput.
16 (1995) 74-87.



BC's: (c)u(-1y)=0, auél); Y) _ Arsin(4ry),

u(x,-1) =0, u(x,1)+

ou(x,1)

=47sin(4xx).

N Present method Strongly enforced BC
L; error L. emror L; error L. error

16 7.30e—-03 5.28e-03 6.75e—02 1.00e—-01
20 8.84e—05 6.75e—05 1.87e—03 2.75e-03
24 4.87e-07 3.80e—-07 1.74e—05 2.57e-05
28 2.21e-12 1.93e—12 1.68e—10 2.43e-10
32 1.59e—14 1.94e—14 1.94e—11 2.25e-11
48 2.08e—-14 2.74e—14 6.12e-11 8.92e-11
b4 3.75e—14 4.24e—14 1.43e—11 3.31e-11




Numerical experiment for 3D PE

(1) Au=f(x,y,2).

(2) f(x,y,z)=—-48%"sin(4xx)sin(4ry)sin(4zz), so eaxct
solution is u(x, y) =sin(4zx)sin(4rzy)sin(4zz).

\ ou(l,y,z _ _
(3) BC's: u(-1,y,z) =0, (a Y. 2) =4zxsin(4rxy)sin(4rxz),
X
ou(x,-1,z ) . ou(x,1,z : .
( ):47zsm(47zx)sm(4yzz), u(x,1, Z)+¥=47Z'S|n(472'X)Sln(47Z'Z),
ou(x,y,—1 . . ou(x,v,1 . .
u(x,y,—1) — (x.y,~1) =—4rsin(4zx)sin(4ry), (x,y.1) =4z sin(4zx)sin(4ry).
0Z 0Z
N Present method Strongly enforced BC
L; error L. error L; error L.error

16 9.0627e-03 5.4835e-03 4.5057e-02 5.6987e—02
20 1.1572e-04 8.7926e-05 1.3111e-03 1.6651e-03
24 6.5795e-07 5.0986e-07 1.2725e-05 1.5583e—05
28 3.0727e-12 2.6552e-12 1.2452e-10 1.4530e-10
32 2.0128e-14 2.8533e-14 1.1011e-14 1.3784e—-14
48 2.5304e-14 3.2713e-14 1.5377e-14 1.5321e-14
64 8.4110e-14 1.1653e-13 3.0008e—14 3.7415e-14




Conclusion

(1) Asymptotic operation account:
2D: 2N N, (N, +N, ), 3D: 2N,N,N, (N, +N, +N, ), compared with FFT-based method,

2D: 2NXNy(Iog(NX)+Iog(Ny)),3D: 2NXNyNZ(Iog(NX)+Iog(Ny)+Iog(NZ)).
(2) This method can be easily extended to the following type of elliptic problem subjected to
all kinds of BC's in a rectangular domain:

(LX+Ly+LZ)u =f(x,y,2),
62
o

where L, = ai(x)aa—):z+b1(X)£+Cl(X)1 L, =a,(y)

0
OX +0,(v),

ay+02(y)1

2

0 0
L, = ae(z)ﬁ+b3(z)5+c3(z).

Sure, it includes Helmholtz equation.
(3) So far, analytic formula for error-minimized tau can be only derived for PE.
(4) For all BC's being Neumann in PE, which has infinitely many solutions and the difference
of any two of them will be a constant, the current method will give you one of the solutions.
(5) The basis function is not limited to Chebyshev polynomials. It can be replaced by

Legendre polynomials or any other basis function as far as there is an associated
collocation derivative matrix. It can be applied to finite difference too.

(6) Sample matlab code is available at http://newton.math.fcu.edu.tw/~tlhorng/index_eng.html.



Thank you for your attention.
Any question?



