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1.1 PENNES’ AND OTHER BIOHEAT TRANSFER EQUATIONS

1.1.1 Introduction

The investigation of heat transfer and fluid flow in biological processes requires accurate
mathematical models. Biological processes basically involve two phases—solid and liquid
(fluid). During the past 50 years, through development of thermal modeling in biological pro-
cesses, heat transfer processes have been established that include the impact of fluid flow
which is due to blood. Table 1.1 shows the significance of thermal transport modes in typical
components of biothermal systems, as our subject of discussion refers to cancer treatments
using heat. For example, thermal diffusion plays a dominant transport mode in tissues,
and convection is less significant as blood perfuses in solid tissues at capillary level vessels
(which are small in size and slow in blood motion).
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Thermal ablation therapy is an application of heat transfer and fluid flow in biological
processes. Temperature plays a significant role with tissue interactions (e.g., coagulation
necrosis). To give readers a picture of temperature treatments with tissue (and terminology),
Table 1.2 shows temperature ranges with their tissue interactions in biological processes. A
thermal model that satisfied the following three criteria was needed to predict temperatures
in a perfused tissue: (1) the model satisfied conservation of energy; (2) the heat transfer rate
from blood vessels to tissue was modeled without following a vessel path; and (3) the model
applied to any unheated and heated tissue. To meet these criteria, many research groups
around the world have proposed mathematical models in an attempt to properly describe
the heat transfer and fluid flow in biological processes in a heated, vascularized, finite tissue
by making a few simplifying assumptions. We will highlight some of the key models and
some models considering the impact of large blood vessel(s) by starting with Pennes’ model.

1.1.2 Pennes’ Bioheat Transfer Equation

The Pennes’ [1] bioheat transfer equation (PBHTE) has been a standard model for predict-
ing temperature distributions in living tissues for more than a half century. The equation was
established by conducting a sequence of experiments measuring temperatures of tissue and
arterial blood in the resting human forearm. The equation includes a special term that
describes the heat exchange between blood flow and solid tissues. The blood temperature
is assumed to be constant arterial blood temperature.

TABLE 1.1 Significance of Thermal Transport Modes in Typical Components of Biothermal Systems

Conduction Convection Radiation

Tissues Significant Less significant Insignificant

Bones Significant Insignificant Insignificant

Blood vessels Less significant Significant Insignificant

Skins Insignificant Significant Significant

TABLE 1.2 Temperature Ranges with Their Tissue Interactions in Biological Processes

Temperature range (�C) Interaction and terminology with tissues

35-40 Normothermia

42-46 Hyperthermia

46-48 Irreversible cellular damage at 45 min

50-52 Coagulation necrosis, 4-6 min

60-100 Near instantaneous coagulation necrosis

> 110 Tissue vaporization
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In 1948, Pennes [1] performed a series of experiments that measured temperatures on
human forearms of volunteers and derived a thermal energy conservation equation: the
well-known bioheat transfer equation (BHTE) or the traditional BHTE. Tissue matrix thermal
equations can be explained most succinctly by considering the PBHTE as the most general
formulation. It is written as:

r�krT + qp + qm�Wcb T�Tað Þ¼ ρcp
@T

@t
, (1.1)

where T(�C) is the local tissue temperature, Ta(
�C) is the arterial temperature, cb(J/kg/

�C) is
the blood specific heat, cp(J/kg/

�C) is the tissue specific heat,W(kg/m3/s) is the local tissue-
blood perfusion rate, k(w/m/�C) is the tissue thermal conductivity, ρ(kg/m3) is the tissue
density, qp(w/m3) is the energy deposition rate, and qm(w/m3) is the metabolism, which is
usually very small compared to the external power deposition term qp [2]. The term
Wcb(T�Ta), which accounts for the effects of blood perfusion, can be the dominant form
of energy removal when considering heating processes. It assumes that the blood enters
the control volume at some arterial temperature Ta, and then comes to equilibrium at the tis-
sue temperature. Thus, as the blood leaves the control volume it carries away the energy, and
hence acts as an energy sink in hyperthermia treatment.

Because Pennes’ equation is an approximation equation and does not have a physically
consistent theoretical basis, it is surprising that this simple mathematical formulation
predicted temperature fields well in many applications. The reasons why PBHTE has been
widely used in the hyperthermia modeling field are twofold: (1) its mathematical simplicity;
and (2) its ability to predict the temperature field reasonably well in application.

Nevertheless, the equation does have some limitations. It does not, norwas it ever intended
to, handle several physical effects. The most significant problem is that it does not consider
the effect of the directionality of blood flow, and hence does not describe any convective heat
transfer mechanism.

1.1.3 The Chen and Holmes Model

Several investigators have developed alternative formulations to predict temperatures in
living tissues. In 1980, Chen andHolmes (CH) [3] derived onewith a very strong physical and
physiological basis. The equation can be written as:

r� k+ kp
� �rT + qp + qm�Wcb T�Tað Þ�ρbcbu�rT¼ ρcp

@T

@t
: (1.2)

Comparing this equation with Pennes’ equation, two extra terms have been added. The
term �ρbcbu �rT is the convective heat transfer term, which accounts for the thermal interac-
tions between blood vessels and tissues. The term r�kprT accounts for the enhanced tissue
conductive heat transfer due to blood perfusion term in tissues, where kp is called the perfu-
sion conductivity, and is a function of the blood perfusion rate. The blood perfusion term
�Wcb(T�Ta), shown in the CHmodel, accounts for the effects of the large number of capillary
structures whose individual dimensions are small relative to the macroscopic phenomenon
under their study. Relatively, the CH model has a more solid physical basis than Pennes’
model. However, it requires knowledge of the details of the vascular anatomy and flow
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pattern to solve it, and while this does increase the accuracy, it adds a great deal of compli-
cation to the solution.

1.1.4 The Weinbaum and Jiji Model

In 1985, Weinbaum and Jiji (WJ) [4] proposed an alternative mathematical formulation of the
BHTE.Their formulation isbasedon theirobservations fromthevascularnetworkof rabbit thighs
that blood vessels that are significant for heat transfer in tissues always occur in countercurrent
pairs. Hence, the major heat transfer mechanism between blood and tissues is the “incomplete
countercurrent heat exchanger” between thermally significant arteries andveins (withdiameters
about 50-500 μm). Their formulation uses tensor notation and it can be written as:

ρc
@θ

@t
� @

@xi
kij
� �

eff

@θ

@xj

� �
¼�π2na2k2b

4σk
Pe2lj

@li
@kj

@θ

@xj
+Qm, (1.3)

where θ is the local temperature, ρc is the volume average tissue density and specific heat
product, a is the local blood vessel radius, σ is a shape factor for the thermal conduction resis-
tance between adjacent countercurrent vessels, n is the number density of blood vessels of size
a, kb is the blood thermal conductivity, Pe is the local Peclet number (¼2 ρbcnau/kb), u is aver-
age blood flow velocity in the vessels, and li is the direction cosine of the ith pair of counter-
current vessels (i.e., ϕ is the angle of the ith pair of countercurrent vessels’ axes relative to the
temperature gradient and li is expressed as cos ϕ). The effective conductivity tensor element,
(kij)eff, is given by:

kij
� �

eff
¼ k δij +

π2na2k2b
4σk2

Pe2lilj

 !
, (1.4)

where δij is the kronecker delta function, and k is the tissue thermal conductivity. Clearly, this
equation represents one of the most significant contributions to the bioheat transfer formu-
lation. However, in practical situations, this equation needs detailed knowledge of the sizes,
orientations, and blood flow velocities in the countercurrent vessels to solve it and that pre-
sents a formidable task. Furthermore, there are several issues related to the WJ model. First,
thorough comparisons for both predicted temperatures and macroscopic experiments are
required. Second, the formulation was developed for superficial normal tissues in which
countercurrent heat transfer occurs. In tumors, the vascular anatomy is different from the
superficial normal tissues, and therefore a new model should be derived for tumors. Wissler
[5,6] has questioned the two basic assumptions of theWJmodel: first, that the arithmeticmean
of the arteriole and venule blood temperature can be approximated by the mean tissue tem-
perature; and second, that there is negligible heat transfer between the thermally significant
arteriole-venule pairs and surrounding tissue.

1.1.5 The Weinbaum, Jiji, and Lemons Model

The Weinbaum, Jiji, and Lemons (WJL) model [7] attempted to describe the blood flow
effect in the heat transfer process when limited to small blood vessels. Keller and Seiler [8]
used the effective conductivity of the nonisothermal region, which is determined under var-
ious blood flow conditions. The WJL model’s approach resembles that of Keller and Seiler [8]
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mathematically in its use of three equations, but theWJLmodel is based on completely different
vascular generations—the WJL equations apply to thermally significant small vessels and not
to major supply blood vessels.

1.1.6 Baish et al

According to Baish et al. [9,10], one of the underlying assumptions in deriving the WJ
model was that, due to the proximity of the vessels in a countercurrent pair, almost all of
the heat conducted through the arterial wall reaches the venous wall—a process in which
the temperature of the tissue between the vessels remains unaffected. They [9,10] criticized
this hypothesis, postulating that part of the heat leaving the wall of a small arteriole will
remain within the tissue. They suggested that the heat transfer between countercurrent ves-
sels depends not only on Ta�Tv, but also on the difference between the tissue temperature, T,
and the average blood temperature, (Ta+Tv)/2. Ta is the arterial temperature and Tv is the
venous temperature.

1.1.7 Others

Efforts have been directed, for the most part, toward the WJL and WJ models. Following
the publication of the CH, WJL, and WJ models, several studies were performed to evaluate
the validity of these new approaches. Here are some arguments and approximations to exam-
ine the blood flow impacts on biothermal modeling.

In 1987, Wissler [5,6] strongly criticized the WJ model because of the assumption made on
the blood temperature at arterial and venous vessels as well as the nearby tissue temperature.
Wissler proposed a new model that described tissue-blood vessels heat exchange that differs
from the respective equations in WJL by virtue of an additional perfusion term. For example,
temperature profiles along an artery-vein pair is approximated as T� Ta +Tvð Þ

2 in theWJmodel.
He rejected the hypothesis that blood and tissue temperatures are closely coupled which was
basically used for the derivation of the thermal conductivity tensor defined in the WJL equa-
tion. The thermal conductivity tensor form in the WJL equation is to remove the blood
flow term.

During 1989-1990, Charny et al. [11,12] introduced a “modified” WJL model for the blood
vessels by changing the governing equation with a tissue energy conservation equation.
Based on their analysis of both steady state and transient temperature fields in the limb under
hyperthermic and normothermic conditions, the tissue temperature profiles predicted by that
model were very similar to those predicted by Pennes’ model in the tissue regions with large
vessels (d>0.4 mm).

1.2 BLOOD FLOW IMPACTS ON THERMAL LESIONS WITH
PULSATION AND DIFFERENT VELOCITY PROFILES

In this section, we will develop a solution to PBHTE coupled with an energy transport
equation of pulsatile blood flow in a thermally significant blood vessel surrounded by a
tumor tissue. The purpose of this design is to study the cooling effect of pulsatile blood flow
in large blood vessels.
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1.2.1 Introduction

Though PBHTE, shown in Equation (1.1), is themost popularmodel in hyperthermiamodel-
ing, a fundamental criticism of this model by Nelson [13] is that the treatment of blood flow
term as a distributed heat source (or sink) mistakenly presumes that the capillary vasculature
is the major site of heat exchange. In other words, the blood flow term is a scalar property. In
fact, the blood flow in a tissue usually has a direction from artery to vein passing through the
capillary bed. Furthermore, the blood and its surrounding tissues are not in thermal equilib-
rium when the blood vessel diameter is larger than 500 μm [14–22]. This means the energy
equations for tissue and blood in significantly large vessels must be treated individually.

One of the key issues of thermal treatments is blood flow. Blood flow usually drains the
delivered heat from the heating region, which causes insufficient thermal dose in the targeted
volume. This is an important factor needing to be considered carefully in thermal treatments
[23–26]. In fact, the differential therapeutic effect of thermal treatments between malignant
and normal tissue may primarily depend on the vascular characteristics of the tumor [27].
Craciunescu and Clegg [28] solved the fully coupled Navier-Stokes and energy equations
to obtain the temperature distribution of pulsatile blood flow within a rigid blood vessel.
They found that the reversed flow enhances as theWomersley number becomes larger, which
results in a smaller temperature difference between forward and reverse flows. Nevertheless,
in their model they only focused on the temperature distribution in blood vessels without
considering the surrounding tissue. Khanafer et al. [26] and Horng et al. [29] further studied
the effects of pulsatile blood flow on temperature distributions during hyperthermia by con-
sidering both the pulsatile blood flow in a blood vessel and its surrounding tissue. Here we
focus on the results of Horng et al. [29] to discuss how the blood flow velocity profile (includ-
ing pulsation frequency), size of blood vessel (including blood flow rate), and heating rate
affect the thermal dose distribution of the surrounding tissue during heat treatment.

1.2.2 Mathematical Model and Numerical Method

1.2.2.1 Velocity Profile of Pulsatile Blood Flow in a Circular Blood Vessel

It is of interest to not only consider simple steady uniform or parabolic blood velocity pro-
file, but also the pulsatile blood flow in thermally significant blood vessels (i.e., larger than
200 μm in diameter) [23,25,29], with the assumptions that the blood vessel segment is straight,
the vessel wall is rigid and impermeable, and the flow is incompressible and Newtonian.
Considering the steady blood flow passing through a rigid vessel of inner radius r0, the axial
Hagen-Poiseuille velocity profile can be expressed as:

w rð Þ¼� 1

4μ
r20� r2
� �dp

dz
, (1.5)

where μ is the dynamic viscosity and dp
dz the constant pressure gradient along the axial (z)

direction. Because the blood flow in the cardiovascular system is periodic, the pressure gra-
dient cannot remain a constant. Here, it is modified to have an additional sinusoidal compo-
nent in time, shown as follows:

@p

@z
¼ c0 + c1e

iωt,
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where ω is the angular frequency and the associated period of time is denoted as eT¼ 2π
ω . Then

the corresponding axial velocity profile, W(r, t), can be expressed as:

W r, tð Þ¼w rð Þ+w1 rð Þeiωt: (1.6)

Here, c0 can be related to the average volume flow rate over the time period eT as follows:

_Qavg ¼
1eT
ðeT
0

ðr0
0

2πWrdrdt¼�πr40
8μ

c0: (1.7)

The average velocity can be further deduced from above:

w¼
_Qavg

π r20
¼�c0r

2
0

8μ
, (1.8)

and w(r) can then be alternatively expressed as:

w rð Þ¼ 2w 1� r2

r20

� �
: (1.9)

The term w1 can be derived from the Navier-Stokes equations [30]. Together with w(r) in
Equation (1.9), W(r, t) in Equation (1.6) can be expressed as follows:

W r, tð Þ¼ 2w 1� r2

r20

� �
+
ic1r

2
0

μα2
1�

J0 α
r

r0
i
3
2

� �
J0 αi

3
2

� �
2664

3775eiωt, (1.10)

where α¼ r0ffiffiffiffiffiffi
ν=ω

p denotes the Womersley number describing the competition between the iner-

tia and viscous forces; ν denotes the kinematic viscosity of blood; and J0 is the Bessel function
of the first kind of order zero. If oscillatory driving pressure gradient is c1 cos(ωt), the corre-
sponding velocity will then be the real part of Equation (1.10). If the oscillatory driving pres-
sure gradient is c1 sin(ωt), the corresponding velocity will then be the imaginary part of
Equation (1.10). Here we also define

fac¼ c1=c0 ¼ c1

.
�8μw

r20

� �
, (1.11)

and use it to characterize the relative intensity of pulsation in the blood flow. Reasonable
value of fac ranging from 0.2 to 1 is considered here.When theWomersley number, α, is large,
the effect of viscosity cannot propagate far from the vessel wall, and the blood flow in the
central part of a vessel acts like an inviscid flow and can be chiefly determined by the balance
between the inertia force and the pressure gradient. Under this situation, the velocity profile
of an oscillatory component has a rather flattop shape at certain phases compared with a par-
abolic profile of Poiseuille flow.When theWomersley number, α, is large enough, the velocity
profile of an oscillatory component may even display two peaks at certain phases [29,31].
Some examples of the diameters of thermally significant blood vessels and their associated
average velocities are listed in Table 1.3 [29]. Taking the largest blood vessel considered in
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Table 1.3 (diameter¼2 mm), and varying heart beat frequency from 1 to 3 Hz as suggested by
Huo and Kasab [32], the velocity profiles of an oscillatory component are respectively shown
in Figure 1.1 at selected time phases. It can be observed that, as the Womersley number
increases with increasing beating frequency, the oscillatory velocity component exhibits flat-
top and even two-peak behaviors.

1.2.2.2 Governing Equations and Numerical Method

Herewe assume that the absorbed power density in blood and tissue is equal to the heating
power density. Although this is a very limiting assumption and generally not true, it still
serves its purpose becausewe focus our study on the cooling effect of large blood vessels here.
The axis-symmetric geometric configuration considered here is a cylindrical perfused tissue,
including tumor and normal tissues, with a coaxial rigid blood vessel inside and throughout
the tissue as shown in Figure 1.2. The whole computational domain is bounded by r¼ rmax,
z¼0,and z¼zmax; the blood vessel is surrounded by r¼ r0,z¼0,and z¼zmax; and the heating
target (tumor and a part of blood vessel inside the tumor) is bounded by r¼ r1,z¼z1,
and z¼z2. The diameters of blood vessels and their associated average flow velocities consid-
ered in the study of this section are presented in Table 1.3.

Under the axis-symmetric geometric configuration mentioned above, the governing equa-
tions for the temperature evolution are PBHTE in Equation (1.12) for tissue and energy trans-
port equation in Equation (1.13) for blood vessels:

ρtct
@Tt

@t
¼ kt

1

r

@

@r
r
@Tt

@r

� �
+
@2Tt

@z2

� �
�Wbcb Tt�Tað Þ+Qt r, z, tð Þ, (1.12)

ρbcb
@Tb

@t
+w

@Tb

@z

� �
¼ kb

1

r

@

@r
r
@Tb

@r

� �
+
@2Tb

@z2

� �
+Qb r, z, tð Þ, (1.13)

where T(r,z, t) denotes the temperature that is distributed axis-symmetrically; ρ,k,c are den-
sity, thermal conductivity, and specific heat, respectively, that are all assumed to be constant;
Q(r,z, t) is the power of heat added axis-symmetrically; Wb is the perfusion mass flow rate;
Ta is the ambient temperature that is usually set to be 37 �C;w(r, t) is that axial velocity of blood
flow; and subscripts t and b represent tissue and blood, respectively. Notice that in the study of
this section the tissuemetabolic heat productionQm is neglected comparedwith heating power
asmentioned in Section 1.1.2. The heat sink�Wbcb(Tt�Ta) in Equation (1.12) is used to describe
the perfusion effect by the microvascular network of blood flow (i.e., blood vessels with diam-
eter generally less than 200 μm), while the heat transfer due to the thermally significant large

TABLE 1.3 List of the Blood Vessel Parameters Used in Current Study

Diameter (mm) Average blood velocity in tumor (w) (mm/s)

0.2 3.4

0.6 6

1.0 8

1.4 10.5

2.0 20
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FIGURE 1.1 Effect of Womersley number, α, on the oscillatory component of the velocity profile for blood flow
with blood vessel diameter being 2 mm. The velocity profile is shown at several selected phases between 0 and 2π for
(a) f¼1 Hz, α¼1.2843, (b) f¼2 Hz, α¼1.8162, and (c) f¼3 Hz, α¼2.2244. Flattop and two peak features can be
observed when α is large as shown in (c). The Womersley number is calculated based on the density of blood
ρb¼1050 kg/m3, and dynamic viscosity of blood μb¼4�10�3 Pas.



blood vessel has to be separately described by Equation (1.13). Together with initial, boundary,
and interface conditions (see details in Ref. [29]), Equations (1.12) and (1.13) were numerically
solved by the highly accurate multiblock Chebyshev pseudospectral method under the frame-
work of method of lines (MOL). Notice that the computational domain is decomposed to nine
blocks and is shown in Figure 1.3with numericalmeshes. Blocks 1, 2, and 3 are the blood vessel;
block 5 is the tumor; the others are normal tissue. Heating zones are blocks 2 and 5. For further
numerical details, see Horng et al. [29] and Shih et al. [33].

1.2.2.3 Calculation of Thermal Dose

The accumulated thermal dose to tissue is a function of heating duration and the temper-
ature level. The estimate of tissue damage is based on the thermal dose the formula for which
was proposed by Sapareto and Dewey [34]. The thermal dose or equivalent minutes at 43 �C
(EM43) is shown as follows:

EM43 inminð Þ¼
ðtf
0

RT�43dt, (1.14)

Z

r
r = rmax

10 mm

z=z2

z=z1

Z

z=zmax

Blood vessel (r = r0)

Heating target (r = r1)
(Tumor tissue)

5mm

(a)

(b)

r

Parabolic velocity profile

Blood vessel (r = r0)

Uniform velocity profile (w) Pulsatile velocity profile

FIGURE 1.2 Geometric configuration in current simulations. (a) The treatment target (heating target) is specified
as z1�z�z2,0� r� r1, with z1¼5 mm,z2¼15 mm,r1¼5 mm considered here. (b) Schematic illustration of the three
kinds of velocity profile of blood flow in blood vessels. Left: steady uniform velocity profile; Middle: steady parabolic
velocity profile; Right: pulsatile velocity profile.
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where R¼2 for T� 43 �C, R¼4 for 37 �C<T<43 �C, and tf¼60 s in the study of this section.
The threshold dose for necrosis is EM43¼240 min for tumor muscle tissue, and the region
encircled by the level curve EM43¼240 min is taken as the thermal lesion region. Covering
tumor tissue but not normal tissue by thermal lesion region as fully as possible ismost desired
in the thermal treatment, though normal tissue may still survive at such a thermal dose
because of the fact that tumor tissue is much less heat-bearable than normal tissue. If we
define the deficit region as the tumor region excluding a thermal lesion region, it would serve
as an evaluation of the effectiveness of the treatment. This region is greatly influenced by the
size of the blood vessel [34] and the heating rate [35]. Six different heating schemes charac-
terizing different heating rates under the same amount of heat added (100 J/cm3 from pre-
liminary energy analysis in lump [36]) are depicted in Table 1.4.

1.2.3 Results and Discussions

Figure 1.4 compares the effects of steady uniform and parabolic velocity profiles for blood
flow on a thermal lesion region with heating scheme II in Table 1.4. Likewise, Figure 1.5 com-
pares the effects of pulsatile blood flow with various pulsatile frequencies (1, 1.5, and 2 Hz)
with the relative intensity of pulsation fac¼0.2 on a thermal lesion region with the same heat-
ing scheme. Figures 1.4 and 1.5 generally show that there is almost no difference in a thermal
lesion region among all these velocity profiles under the same size of blood vessel. Only a

Z

r

FIGURE 1.3 The overall computational
domain is decomposed into nine rectangular
blocks in r�z coordinates. Notice that blocks
1-3 are for the blood vessel, and blocks 4-9 are
for the tissue with block 5 being the tumor
and the others being the normal tissue. Heating
zone indicated in Figure 1.2(a) would be blocks
2 and 5.

TABLE 1.4 Parameters of Six Different Heating Schemes Used in Current Study

Heating case I II III IV V VI

Heating power density Q (W/cm3) 100 50 25 10 5 2

Heating duration th (s) 1 2 4 10 20 50

Total heated energy density (J/cm3) 100 100 100 100 100 100

111.2 BLOOD FLOW IMPACTS ON THERMAL LESIONS WITH PULSATION AND DIFFERENT VELOCITY PROFILES



D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20
D – z (mm)

D
–

r 
 (

m
m

)
D

–
r 

(m
m

)

10

5

0

5

10

0 5 10 15 20
D – z (mm)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)

(a)

(b)

(c)

(e)

(i)

D
–

r 
(m

m
)

10

5

0

5

10

0 5 10 15 20

D – z (mm)(d)

(j)

(g)

(h)

(f)

FIGURE 1.4 Effect of the steady velocity profiles of blood flow on the thermal lesion region (shaded region) for the
blood vessels (a and f) 0.2 mm, (b and g) 0.6 mm, (c and h) 1 mm, (d and i) 1.4 mm, (e and j) 2 mm in diameter. (a-e) are
results of a uniform velocity profile, and (f-j) are results of a parabolic one. The blood vessel boundaries are denoted
with the horizontal dashed lines. The heated target region (tumor) is denoted by a square with dashed lines. Here
r1¼5 mm, Wb¼2 kg/m3/s1, ρb¼ρt¼1050 kg/m3, cb¼ct¼3770 J/kg1/�C1, kb¼kt¼0.5 W/m3/�C1. The target is
heated in the way of heating case II (i.e., Qt¼Qb¼50 W/cm3, and the heating duration¼2 s) in Table 1.4.
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FIGURE 1.5 Effect of the frequency of the pulsatile blood flow on the thermal lesion region (shaded region) for the
blood vessels (a, f, and k) 0.2 mm, (b, g, and l) 0.6 mm, (c, h, and m) 1 mm, (d, i, and n) 1.4 mm, (e, j, and o) 2 mm in
diameter. (a-e) have the frequency 1 Hz, (f-j) have the frequency 1.5 Hz, and (k-o) have the frequency 2 Hz. The blood
vessel boundaries are denoted with the horizontal dashed lines. The rest of the parameters and conditions are the
same as Figure 1.4.
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minor difference of the thermal lesion region in the blood vessel is observed in the middle-
sized blood vessels (see details in Figure 1.6 of Horng et al. [29]).

Although the thermal lesion region is rather insensitive to the velocity profile of blood
flow, it is deeply influenced by the size of the blood vessel because the heat convection by
the blood flow in a blood vessel usually serves as a stronger heat sink than the blood perfusion
in tissue. That means the temperature would drop faster in a blood vessel than in its sur-
rounding tissue. This may cause a deficit in the thermal lesion region in the blood vessel
and the surrounding tissue, which can be easily observed from Figures 1.4 and 1.5. Generally,
the deficit of the thermal lesion region is less for smaller vessels. In the case of the smallest
vessel (here with a diameter 0.2 mm), the thermal lesion region covers almost the entire blood
vessel that is inside the tumor and the deficit is naturally the least. For the middle-sized ves-
sels (here with diameters of 0.6 and 1 mm), the thermal lesion region in the blood vessel
becomes smaller and shifts downstream. For large vessels (here with diameters of 1.4 and
2 mm), there is a total deficit of the thermal lesion region in the blood vessel, and this would
cause a deficit in the tumor tissue near the blood vessel and especially in the upstream area.

Besides having a dependence on the blood vessel size, the thermal lesion region is also very
sensitive to the heating rate. Figure 1.6 generally shows a larger thermal lesion region for
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FIGURE 1.6 Comparison of the effect of different heating
schemes and blood vessel diameters on the thermal lesion region
with a steady uniform velocity profile. The solid and dashed lines
represent heating cases II and IV, and the shaded area represents
the heating case VI in Table 1.4. (a) The diameter of the blood vessel
is 0.2 mm. (b) The diameter of the blood vessel is 1 mm.
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faster heating, and there is a more pronounced effect on the heating rate when the blood ves-
sel is larger. As shown in Figure 1.6b, there exists an obvious shift of thermal lesion region to
the downstream of the blood vessel with diameter 1 mm when heating is fast, and this may
cause unwanted thermal injury in normal tissue nearby. The effect of pulsation amplitude, in
terms of relative intensity fac, of pulsatile blood flow on the thermal lesion region generally
has little difference among various facs, except aminor difference for middle-sized blood ves-
sels. This is further noted in Horng et al. [29] in the discussions of Figures 1.9–1.11. Generally,
when fac increases, the blood flows more in a stick-slip fashion, and this may considerably
influence the heat convection when incorporated with pulsation frequency. With large pul-
sation amplitudes like fac¼0.8 and 1, it even shows two-peak behavior in a thermal dose con-
tour at the downstream of the blood vessel.

1.2.4 Conclusion

The current investigation shows that the effect of velocity profiles of blood flow, ranging
from uniform, to parabolic, to pusatile, has almost no difference in the thermal lesion region
on the tumor region and only a minor difference on the blood vessel when the blood vessel is
of middle size. This result suggests that wemight just as well use the simplest steady uniform
or parabolic velocity profile to do the simulation. In fact, the thermal lesion region is much
more sensitive to the heating rate and the size of the blood vessel. Faster heating would form
a much better thermal lesion region, and it works best on small blood vessels with a better
covering of both the tumor and the blood vessel by the thermal lesion region because the heat
convection by the blood flow is least in the blood vessel. For large vessels, it has a total deficit
in the blood vessel and some deficit in the tumor near the upstream of blood vessel. As to
middle-sized vessels, a shift of a partially deficient thermal lesion region to the downstream
of the blood vessel may cause unwanted thermal injury to the normal tissue nearby.

1.3 THERMAL RELAXATION TIME FACTOR IN BLOOD FLOW
DURING THERMAL THERAPY

Non-Fourier heat conduction has been observed in biotissues, which implies PBHTE has to
bemodified by considering the thermal relaxation time factor. Herewe study this effect under
the same geometric configuration for tissue and blood vessel as in Section 1.2 to see how it
affects hyperthermia generally.

1.3.1 Introduction

PBHTE, shown in Equation (1.1), is based on the classical Fourier law, which assumes that
a temperature disturbance in any part of the materials leads to an instantaneous perturbation
at each point of the whole. This implies that the propagation speed of thermal perturbation is
infinite even when the intervening distance is very large, and causes some doubts and dis-
cussions [37–39]. Actually, non-Fourier heat conduction behavior has been observed in bio-
materials with inhomogeneous inner structures [40], in biological tissues [41,42], in canine
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thigh muscles [43], and in processed meats [44,45]. Considering the finite propagation speed
for the thermal disturbance, Cattaneo [46] and Vernotte [47] formulated a modified heat flux
equation, as shown in Equation (1.16) with the Fourier law shown in Equation (1.15) for
comparison

q r
!
, t

	 

¼�krT r

!
, t

	 

, (1.15)

q r
!
, t

	 

+ τ

@q r
!
, t

	 

@t

¼�krT r
!
, t

	 

, (1.16)

where T,q,k, and τ are temperature, heat flux, thermal conductivity, and thermal relaxation
time, respectively. If we formally treat�krT in Equation (1.16) as a constantA, the solution of
Equation (1.16) would be simply:

q¼A+Be� t
τ: (1.17)

We can then see how q is relaxed to A in the time scale of τ from Equation (1.17). The thermal
relaxation time for biological tissues has typically been found to be large, leading to signifi-
cant non-Fourier thermal behavior. Mitra et al. [44] conducted an experiment in which they
measured the thermal relaxation time in processed meat and reported that τ could be as large
as 16 s. Kaminski [40] reported that τ ranges from 10 to 50 s in his experiment with materials
with inhomogeneous inner structures. Roetzel et al. [48] also confirmed the hyperbolic behav-
ior of thermal propagation with τ about 1.77 s in a similar experiment. Using the thermal
properties of tissue and blood from some literatures, Zhang [49] computed and argued that
reasonable τ should range from 0.464 to 6.825 s. He further found that the dual-phase lag phe-
nomenon in temperature and its gradient due to the wave feature is more pronounced when
the blood vessel is large. Shih et al. [33] continued to explore the heat wave caused by thermal
relaxation time and further investigated the coupled effect of blood flow in large blood vessels
and thermal relaxation time on the heating of tumor tissues. Based on the results of Shih et al.
[33], we discuss the related heat wave behavior caused by non-zero thermal relaxation time.

1.3.2 Mathematical Model and Numerical Method

1.3.2.1 Features of the Hyperbolic Heat Equation

Consider the 1D transient heat equation without any heat source as follows:

ρcp
@T x, tð Þ

@t
+
@q x, tð Þ

@x
¼ 0, (1.18)

with ρ being the density and cp being the specific heat. Differentiating Equation (1.18) with
respect to t, and multiplying it by τ, we can obtain a new equation. Adding this new equation
to Equation (1.18), and applying Equation (1.16), we can obtain the following hyperbolic
heat equation:

ρcpτ
@2T

@t2
+ ρcp

@T

@t
¼ k

@2T

@x2
, (1.19)
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or

@2T

@t2
+
1

τ

@T

@t
¼ c2

@2T

@x2
, (1.20)

with the wave speed c¼
ffiffiffiffiffiffiffi
k

ρcpτ

q
. Here we conduct a normalmode analysis of Equation (1.20) by

studying its solution form in traveling wave T(x, t)¼ei(ξx�ωt). Substituting this traveling wave
solution into Equation (1.20), we can obtain its dispersion relationship:

ω¼�i	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4τ2c2ξ2�1

p
2τ

, (1.21)

and then

T x, tð Þ¼ e� t
2τeiξ x�cefftð Þ, ceff ¼	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4τ2c2ξ2�1

p
2ξτ

, when4τ2c2ξ2 � 1, (1.22)

T x, tð Þ¼ e

�1	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4τ2c2ξ2

p
2τ

 !
t

eiξx, when4τ2c2ξ2 < 1: (1.23)

FromEquation (1.22), high-frequencymodes travel in two directions and damp at the same
time, while low-frequency modes simply decay without propagation from Equation (1.23).
The attenuation rate decays with increasing τ for both high-frequency and low-frequency
modes. All these mean that while temperature is decaying as a whole, we can only observe
high-frequency waves traveling.

1.3.2.2 Thermal Governing Equations and the Numerical Method

Here we consider the same geometric configuration and blood velocity profile (Equa-
tion 1.10) as in Section 1.2. Usually, the governing equations for the temperature evolution
are the PBHTE shown in Equation (1.24) for solid tissue and energy transport equation shown
in Equation (1.25) for blood flow in terms of the cylindrical coordinate under an axis-
symmetric situation:

ρtct
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with symbol of notations and meaning of each term the same as in Section 1.2.
Taking into account the finite thermal propagation speed in living solid tissues, we mod-

ified Equation (1.24) by the heat flux formula in Equation (1.16) following the same procedure
used to arrive at Equation (1.19), and obtained a hyperbolic bioheat transfer equation (HBTE)
as shown in Equation (1.26) to replace Equation (1.24):
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, (1.26)
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in which the terms on the left side represent heat wave and heat diffusion, respectively. They
are competing with each other with the thermal relaxation time τt characterizing the strength
of wave. When τt¼0, HBTE (Equation 1.26) will totally reduce to a parabolic-type PBHTE
(Equation 1.24), and heat wave reduces to heat diffusion. The external heating rate Qt in
Equation (1.26) and Qb in Equation (1.25) are designated as follows:

Qt r, z, tð Þ¼ eQt

π

2
sin

πt
th

� �
, r0 � r� r1,z1 � z� z2,0� t� th,

0, r, z, tð Þotherwise,

8<:
Qb r, z, tð Þ¼ eQb

π

2
sin

πt
th

� �
, r� r0,z1 � z� z2,0� t� th,

0, r, z, tð Þotherwise,

8<: (1.27)

where eQt and eQb are the time averaged values ofQt andQb, respectively, and th is the duration

of time of heating. In the study of this section, we let eQt ¼ eQb ¼Q. Six heating schemes con-
sisting of various combinations of Q and th are shown in Table 1.4, and schemes I-V are par-
ticularly employed here to study the effect of heating rate.

The initial conditions for the blood vessel and the tissue are

Tt r, z, 0ð Þ¼Tb r, z, 0ð Þ¼ 37, and
@Tt

@t
r, z, 0ð Þ¼ 0�C=s:

At the interface Γ(r¼ r0,0�z�zmax) between the blood vessel and tissue, temperature and
heat flux continuity conditions are imposed:

Tt ¼Tb, and kt
@Tt

@n
¼ kb

@Tb

@n
at Γ,

where n denotes the direction normal to Γ. At r¼0, the pole condition was applied for the
blood vessel:

@Tb

@r
¼ 0:

The boundary conditions at r¼ rmax,z¼0, and z¼zmax are all set to:

Tt ¼Tb ¼ 37�C,

except that the convective boundary condition is employed for the blood vessel part at
z¼zmax:

@Tb

@t
+W

@Tb

@z
¼ 0, at z¼ zmax:

Together with these initial boundary and interface conditions, Equations (1.25) and (1.26)
were numerically solved by the highly accurate, multiblock Chebyshev pseudospectral
method under the framework of MOL. Again, the computational domain is decomposed
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to nine blocks, and designation of heating zones is the same as Section 1.2. For further numer-
ical details, see Horng et al. [29] and Shih et al. [33].

1.3.3 Results and Discussions

Here we discuss how the thermal relaxation time τt affects the thermal treatment. Numer-
ical experiments were conducted under exhaustive combinations of heating rate Q (first five
schemes listed in Table 1.4), and thermal relaxation time (τt¼0,0.464,1.756,and 6.825 s as
suggested in [49]). Here we only consider the case of the blood vessel diameter being
2 mm in Table 1.3, because larger blood vessels have been proved to be more thermally sig-
nificant with sensitivity to heating rate [29]. The time evolution ofmaximum temperature and
the thermal dose are particularly chosen here to demonstrate the effect of the thermal relax-
ation time. Thoughwe did consider the blood flow to be pulsatile as periodically driven by the
heart as in Section 1.2 in the beginning, blood flow pulsation was found to make negligible
difference when just considering blood flow to be simply steady axial Hagen-Poiseuille flow,
both in the time evolution of maximum temperature and thermal dose for all heating rates
and τt considered here. We can, therefore, conclude that the thermal behavior is actually quite
insensitive to the pulsation of blood flow [33].

The wave feature in HBTE (Equation 1.26) with large τt is found to be most pronounced
when the heating rate is fast. In Figures 1.7 and 1.8, we compare the time evolution of the
temperature distribution for τt¼0 and 6.825 s under the case of the fastest heating rate (heat-
ing scheme I in Table 1.4). A non-smooth temperature distribution in space is clearly observed
during time evolution in Figure 1.8 for τt¼6.825 s, featuring high-frequency wave propagat-
ing, while only smooth temperature distribution is observed all the time in Figure 1.7 for
τt¼0 s, featuring the parabolic tendency of PBHTE in Equation (1.24). Notice that only
high-frequency waves are pronounced in Figure 1.8. This is because high-frequency modes
propagate and at the same time attenuate, while low-frequency modes attenuate only. This
can be well explained by the analysis in Section 1.3.2.1.

The time evolution of the maximum temperature in space, max(r,z)2ΩT, can be particularly
useful to demonstrate the effect of thermal relaxation time under different heating rates as
shown in Figure 1.9. Generally, this maximum temperature happens near the center of zone
5 (tumor tissue). For τt¼0, we can seemax(r,z)2ΩT always reaches its maximum in time right at
the end of heating as expected, while max(r,z)2ΩT generally exhibits a plateau in time after the
end of heating for non-zero τt’s, which ismore pronounced as τt is large and heating rate is fast
by comparing sub-figures in Figure 1.9. This can be easily understood by the larger lagging of
heating and smaller attenuation rate from Equation (1.23) for low-frequencymodeswhen τt is
large. Obviously, high temperature also tends to accumulate and preserve in time at the
tumor zone when the heating is fast (less time for tumor to respond and relax thermally).
Notice that, for slow heating in Figure 1.9d and e, the maximum temperature plateau is
far less pronounced compared with fast heating in Figure 1.9a-c and this is because the heat-
ing is so slow that the tumor has enough time to respond and relax thermally. In Figure 1.9d
and e, we can also observe non-zero τt’s even lead τt¼0 in time to reach their maxima, and the
larger τt’s are, the larger maxima are reached. Again, this can be explained by the larger heat-
ing lagging and less attenuation as τt gets large.
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FromFigure 1.10, we can observe that the tumor tissue is generally covered better by a ther-
mal lesion region based on EM43¼240 min level curve when heating is fast, and that this
effect is further enhanced when τt is large. Some of these regions even cover a small part
of the normal tissue near the downstream junction of the blood vessel, tumor, and normal
tissue as shown in Figure 1.10a and b, which is actually not desired in thermal treatment.

(a)

(b)

(c)

(e)

(f)

(d)

FIGURE 1.7 Time development of temperature distribution in space for τt¼0 s under heating scheme I in
Table 1.4 of Section 1.2 is shown at (a) t¼1 s, (b) t¼7.5 s, (c) t¼10 s, (d) t¼12 s, (e) t¼14.5 s, (f) t¼19.5 s. The blood
vessel diameter is 2 mm.
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(a)

(b)

(c)

(e)

(f)

(d)

FIGURE 1.8 Time development of temperature distribution in space for τt¼6.825 s under heating scheme I in
Table 1.4 of Section 1.2 is shown at (a) t¼1 s, (b) t¼7.5 s, (c) t¼10 s, (d) t¼12 s, (e) t¼14.5 s, (f) t¼19.5 s. The blood
vessel diameter is 2 mm.
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The phenomenon above is comprehensible from the fact that the high temperature is pre-
served for longer durations and the heat is drained more slowly when heating is fast and
τt is large (as demonstrated in Figure 1.9). Generally speaking, the traditional simulations
based on PBHTE may underestimate the thermal lesion region by neglecting nontrivial ther-
mal relaxation time in living tissues.

(a) (d)

(b) (e)

(c)

FIGURE 1.9 Maximum temperature in space max(r,z)2ΩT versus time with heating schemes I-V in Table 1.4 in
Section 1.2 shown in (a-e), respectively. τt¼0,0.464,1.756,and 6.825 s are represented by blue, green, red, and black
curves, respectively. The blood vessel diameter is 2 mm.
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1.3.4 Conclusion

From the couplingmodel of thermal hyperbolic bioheat transfer in solid tissues and energy
transport of blood flow in thermal significant blood vessels developed above, the thermal
behavior is found to be very sensitive to the heating rate and the thermal relaxation time. Heat
leaves the target region more slowly and tumor tissue preserves high temperature longer

(a) (d)

(b) (e)

(c)

FIGURE 1.10 Thermal lesion region represented by EM43¼240 min contourwith heating schemes I-V in Table 1.4
of Section 1.2 shown in (a-e), respectively. τt¼0,0.464,1.756,and 6.825 s are represented by blue, green, red, and black
curves, respectively. The blood vessel diameter is 2 mm.
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when heating is fast and thermal relaxation time is large. This is all due to the larger lagging of
heating and less attenuation for low-frequency modes as τt gets large. The wave feature char-
acterized by large thermal relaxation time also causes the thermal lesion region based on
EM43¼240 min level curve to cover the tumor region better. It implies that the traditional sim-
ulations based on PBHTEmay underestimate thermal dose because thermal relaxation time is
actually nontrivial in living tissues.

1.4 PBHTE WITH THE VASCULAR COOLING NETWORK MODEL

As stated in the previous section, blood flow accounts for up to 90% of heat removal [50].
Thus, attempting to model complicated vascular geometry in which blood circulates along
those different sizes of vessels is an important approach to analyze precisely the heat transfer
processing in a biothermal system. To account for the impact of large blood vessels on the heat
transfer processes, thermalmodels have to take conductive and convective heat transport into
account. And many researchers have attempted to describe the impacts of the blood vessels
[18]. Some of the vascular models have been designed not for application in hyperthermia
treatment planning, but to obtain basic insight into the heat transfer between large blood ves-
sels and tissue. Therefore, thesemodels are relatively simplewith straight vessels represented
by a tube with a specified diameter [16,51–53]. These basic models are also very useful in
calculating the temperature distributions induced by thermal ablation, where it is necessary
to account for a single large blood vessel passing through a target region. The heat transfer
modes—conduction and convection—are seen during biological processes. Investigation of
the basics of heat transfer using basic discrete vessel models and a selection of these models
are discussed below.

1.4.1 Thermally Significant Blood Vessel Model

During the late 1980s, many investigators [9–11], following the rationale that was similar to
that which initiated the CH and WJ models presented in Section 1.1, began to question the
handling of the blood perfusion term and how to better approximate the blood temperature
and the local tissue temperatures where blood vessels (countercurrent vessels) are involved.
Because arterial and venous capillary vessels are small, their thermal contributions to local
tissue temperatures are insignificant when compared with large blood vessels. However,
for vessel sizes larger than the capillaries, there are noticeable, thermally significant impacts
on the local tissue temperatures during either the cooling or heating processes. Several inves-
tigators [16,51] examined the effect of large blood vessels on the temperature distribution
using theoretical studies. Huang et al. [54], in 1996, presented a more fundamental approach
to model temperatures in tissues than do the generally used approximate equations, such as
the PBHTE or effective thermal conductivity equations. As such, this type of model can be
used to study many important questions at a more basic level. For example, in the particular
hyperthermia application studied [54], a simple vessel networkmodel predicts that the role of
countercurrent veins is minimal and that their presence does not significantly affect the tissue
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temperature profiles. The arteries, however, removed a significant fraction of the power
deposited in the tissue. The Huang model used a simple convective energy balance equation
to calculate the blood temperature as a function of position:

_Micb
dTb

dxi
¼ _Qap�hiAi Tb�Twð Þ: (1.28)

Here, _Mi is the mass flow rate of blood in artery i, cb is the specific heat of blood, Tb(xi) is the
average blood temperature at position xi, xi indicates the direction along the vessel i (either x,
y, or z depending on the vessel level). _Qap is the applied power deposition, xi is the position x
along blood vessel i, hi is the heat transfer coefficient between the blood and the tissue,Ai is the
perimeter of blood vessel i, and Tw(xi) is the temperature of the tissue at the vessel wall. For
the smallest, terminal arterial vessels, a decreasing blood flow rate is present, resulting in the
energy balance equation:

_Micb
dTb

dxi
¼ _Qap�hiAi Tb�Twð Þ�d _Mi

dxi
cbTb: (1.29)

The blood leaving these terminal arterial vessels at any cross-section is assumed to perfuse
throughout the tissue at a constant rate. A detailed description is given by Huang et al. [54].
As to the venous thermal model, for all veins except the smallest terminal veins, Equa-
tion (1.28) holds. For the smallest veins, the blood temperature, Tb, is replaced by the venous
return temperature, Tvr(xi). In the presented study, this temperature is taken to be the average
temperature of four tissue nodes adjacent to the terminal vein in the plane perpendicular to
that vein:

Tvr ¼ 1

4

X4
i¼1

Ti, adj, (1.30)

Ti,adj is the tissue temperatures adjacent to the venous vessel. As a terminal vessel runs in any
x, y, or z straight direction, there are four neighboring tissue nodes considered in terms of the
computational scheme (i.e., finite difference method). In order to graphically illustrate the
models and assumptions above, Figure 1.11 shows models depicting Equations (1.28)–(1.30).

1.4.2 Vessel Network Geometry and Fully Conjugated Blood Vessel
Network Model

The Fully Conjugated Blood Vessel Network Model (FCBVNM) is a model formulation
which describes the solid tissuematrix having thermally significant vessel generations (seven
levels) by Huang et al. [54]. The effects of all vessels smaller than the terminal (level 7) vessels
are not explicitlymodeled in FCBVNM. Thus, those smaller vessels (connected to the terminal
arteries and the terminal veins in the network) are implicitly assumed to be thermally insig-
nificant in the FCBVNM.

The tissue geometry used in this study [54] consists of a regular, branching vessel network
as partially shown (only the arterial vessels are shown) in Figure 1.12 that is embedded in a
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control volume, which is an (approximate) cube of dimensions L¼8.2 cm andW¼H¼8 cm in
the x, y, and z directions, respectively. All vessels are straight-line segments and are parallel to
one of the three Cartesian axes. There are up to seven levels of arteries, beginning with the
main artery (level 1) which lies along the central, lengthwise (x) axis of the cube. Table 1.5
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(b)

(c)

Ti,adj (i =1~4)

Vein vessel
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Tvr
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M b,i M b,i
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dMb,i

dx

x

0

Artery vessel 
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Mb,i
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FIGURE 1.11 (a) The model used for non-
terminal artery blood vessels in which the con-
vective energy Equation (1.28) is solved for the
FCBVNMmodel.Mb,i is the blood flow rate enter-
ing vessel i and leaving with an identical mass
flow rate Mb,i. (b) The model used for the artery
terminal vessels (level 7) as explained in Equa-
tion (1.29).Mb,i is the blood flow rate entering ves-
sel i with a linearly perfused mass flow rate into
tissue of dMb,i/dx. (c) The model calculating
returning vein blood temperature, as explained
in Equation (1.30).

y

X

Z

FIGURE 1.12 Schematic diagram to show a portion of the arterial vessel network used in this study. All seven
vessel levels (level 1-7) for the arterial network are shown, and the venous network, which is not shown, is parallel to
the arterial network, with a grid size in the x, y, and z dimensions away from the arterial network. ‘1’ is not shown in
Fig 1.12. It represents the main artery (level 1) and largest artery of 7-level blood vessel model. The level 1 artery lies
along the long central, lengthwise (x) axis in Fig.1.12.
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lists the basic vessel network properties used in this section (vascular parameters for each
vessel level in the vascular network model in simulation). The diameters of the arteries
decrease by a constant ratio, γ, between successive levels of branching vessels (the ratio of
diameters of successive vessel generations), in other words:

γ¼Di+ 1

Di
, (1.31)

whereDi andDi+1 are the diameters of two successive levels of branching arteries. When two
successive levels of numbered vessels do not branch but only change direction (i.e., levels 6
and 7 in this model), the vessel diameter does not change. In this study, we used γ¼0.9 in the
presented results.

The desired treated tumor region is a cube described in Figure 1.13awith 20 mm in x, y, and z
dimensions. The locations and paths of arterial vessels inside the treated region are described in
Figure 1.13b and c. The geometric arrangement of the countercurrent veins is essentially iden-
tical to that of the arteries, with all of the veins offset from the arteries by one finite difference
node in x, y, and z dimensions as appropriate to avoid intersections of vessels.

1.4.3 Discrete Vessel Modeling with Semicurved Vessel Network and
Real 3D Vasculature Network

A vasculaturemodel with straight lines provides a tool for a better analysis in a heat transfer
process that is influenced by convection from different sizes of vessels. A more flexible algo-
rithm in which the model geometry is subdivided into a vessel space and a tissue space has
been developed by Mooibroek and Lagendijk [55] to obtain a more realistic, semicurved rep-
resentation of vessel networks for use in hyperthermia treatment planning. This semicurved

TABLE 1.5 Vascular Parameters for Each Vessel Level in the Vascular Network

Vessel

level

Total

number of

vessels

Individual

vessel length

Vessel

diameter

Vessel

spacing (x, y, z)

Maximum mass

flow rate in vessel

Total vessel

surface area

1 1 L/2a D NA 128 PVtsv+MTA
b πLD/2

2 4 H/4 γD NA, NA, L/2 32 PVtsv γπHD

3 8 W/4 γ2D NA, H/2, L/2 16 PVtsv 2γ2πWD

4 8 3L/8c γ3D W/2, H/2, NA 12 PVtsv 3γ3πLD

5 64 H/8 γ4D W/2, NA, L/8 2 PVtsv 8γ4πHD

6 128 W/8 γ5D W/4, H/4, L/8 PVtsv 16γ5πWD

7 128 L/8�Δd γ5D W/4, H/4, NA PVtsv 16γ5π(L�8Δ)D

NA indicates that the particular parameter in not applicable for that vessel level.
a The level 1 vessel terminates at the center of the control for all cases i in this paper.
b The value at the inlet to the control volume.
c Each level 4 vessel has three segments.
d The terminal ends of one set of level 7 vessels are separated from the beginning of the next set of level 7 vessels by a gap of one finite difference nodal

space, Δ¼2 mm.
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model uses a finite difference method, and the vessel segments are represented by connected
strings of vessel nodes. The nodes with their centers closest to the vessel axis are considered
vessel nodes. The description of a 3D vessel segment is used as a building block, which allows
modeling of realistic complex vessel networks. A vessel-specific second discretization step in
time is performed to describe the convective heat transfer within the vessel space. This makes it
possible to incorporate vessels with different flows and diameters. Furthermore, the predicted
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FIGURE 1.13 (a) A transparent view of parallelepiped showing the desired heated tumor region, which is a cube
of 20 mm in each dimension. The level 1 blood vessel (largest) runs through the desired heated cube’s edge from (42,
40, 40) to (62, 40, 40). The inlet temperature of the level 1 vessel starting at (0, 40, 40) is set at 37 �C. (b) Shows the
coordinates of eight corners of the desired treated cube (unit: mm). (c) Is a dissected transparent view showing all
associated arterial blood vessel paths (or segments) in the cubic volume, and venous vessels do not appear in the
figure. There are two branches of level 5-7 blood vessels and one of level 5 and 6 on the back boundary as the dissected
view indicates.
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thermal equilibration lengthswere compared to theoretical values, and a reasonable agreement
was observed. Comparisonwith phantommeasurements showed accuracywithin the range of
the experimental error. This result shows that cylindrically shaped vessels can be modeled
accurately using a square grid, which is a very important simplification for numerical tech-
niques used by practitioners. However, because of the cubic subdivision of blood vessels, a
one-to-one description of a true 3D vessel network cannot be realized with this model.

To address the above-mentioned problems, a more sophisticated thermal model that
allows thermal modeling with real detailed 3D discrete vasculature networks (DIVA) has
been developed by Kotte et al. [56,57]. Similar to Mooibroek and Lagendijk [55], the model
geometry is subdivided into a vessel space and a tissue space, but in the DIVA model, the
vasculature is described by 3D curves with a specified diameter. This approach allows the
consideration of all relevant blood vessels independent of the voxel size. Besides the clear
advantage of the tissue-voxel resolution independence, modeling blood vessels as 3D curves
makes the model compatible with MR/CT (Magnetic Resonance/Computerized Tomogra-
phy) angiography vessel reconstruction software, which is essential for routine use in treat-
ment planning. As to the heat transfer calculation, the exact heat flow between a vessel
segment and its surrounding tissue is difficult to calculate for a realistic situation with a het-
erogeneous vessel network that includes power and temperature distributions. To solve this
problem, a method to estimate the heat flow using a simplified situation has been developed
[56]. For a vessel segment embedded in a tissue cylinder, an analytical expression for the heat
flow can be derived when cylindrically symmetric boundary conditions and a thermally fully
developed flow are assumed. The latter is justified because the entrance length is considerably
shorter than the equilibration length [18].

1.4.4 Conclusion

There has been substantial progress in thermal modeling with discrete vasculature. Many
basic models have been developed to provide insight into the cooling effects of vasculature
and temperature gradients around large blood vessels. Modeling of straight and semicurved
vessel networks has led to improved characterization of heat transfer between vasculature
and tissue. However accuracy and time efficiency will be great concerns when complicated
vasculature thermal models are developed and used in the real time clinic treatments.

1.5 HYPERTHERMIA TREATMENT PLANNING

A treatment planning for hyperthermia in biological processes is essential for adequate
treatment control. Reliable temperature information during clinical hyperthermia and ther-
mal ablation must comprise a thermal model, but conventional temperature measurements
do not provide 3D temperature information. The model must take conductive and convective
heat transport into account, as blood flow plays a significant role in hyperthermia [50]. Hyper-
thermia cancer treatment requires precise thermal absorbed power deposition to raise tumor
tissue temperature up to the therapeutic range with a sufficient amount of time duration to
prevent overheating the normal tissues. Many researchers [58–61] have investigated a
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noninvasive heating modality for exploring power deposition with fine spatial resolution
and/or optimization within the tumor region. Hyperthermia applicator technology is cur-
rently one of the most important things that can improve temperature homogeneity in the
treated region as well as help to reach an optimal applied power field. This section investi-
gates the significance of blood vessels in the absorbed power and temperature distributions
when optimization was employed during hyperthermia. The treated tumor region is simu-
lated using a three-dimensional (3D) tissue model embedded with a countercurrent blood
vessel network [54]. 3D absorbed power depositions are obtained by using optimization to
reach a uniform temperature of 43 �C for the desired treated region. The results show that
the absorbed power deposition for optimization with fine spatial resolution produces a uni-
form temperature distribution maintained at 43 �C in the desired treated tumor region except
for some cold spots and/or small cold strips caused by thermally significant large vessels. The
amount of total absorbed power suggests that a region with thermally significant vasculature
requires much more power deposited than one without vasculature. In addition, optimiza-
tion with coarse spatial resolution results in a highly inhomogeneous temperature distribu-
tion in the treated region due to the strong cooling effect of blood vessels. Therefore, prior to
hyperthermia treatments, thermally significant blood vessels should be identified and han-
dled carefully to effectively reduce their strong cooling effect, particularly those vessels flow-
ing into the treated region.

1.5.1 Optimization with Fine Spatial Power Deposition: Based on Local
Temperature Response in the Treated Region

Figure 1.14 is a flow chart describing continuously adjusting absorbed power deposition in
the desired treated tumor region in order to reach ideal temperature (uniform temperature
throughout the treated tumor region with a temperature of 43 �C). The evaluation criterion
of absorbed power deposition is shown in Equation (1.32). It states that the root mean square
of the difference between the ideal temperature (43 �C) and the calculated temperature of all
heated target nodes which is normalized by the difference, 43-37 �C, reaches less than the cri-
terion value (set to be 10% of the temperature difference of 43-37 �C). If this criterion is
achieved,we obtain the optimization of absorbed power deposition such that the heating tem-
perature distribution is close to the ideal temperature distribution. Otherwise, the absorbed
power deposition will be adjusted according to the local temperature. The readjusted power
deposition (Pn+1) is described in Equation (1.33):

Evaluation criterion:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
all target nodes

ΔT x, y, zð Þð Þ2

Total number of target nodes

vuut
43�37 �C

� 0:1, (1.32)

Pn+ 1 x, y, zð Þ¼Pn x, y, zð Þ+ΔP x, y, zð Þ, (1.33)

with ΔP(x,y,z)¼C �ΔT(x,y,z), C is 10,000, n is the iteration number, and ΔT(x, y, z) is the dif-
ference of ideal temperature (43 �C) and calculated temperature.

To investigate the significance of blood vessels in the temperature distribution for optimal
hyperthermia treatment, an optimization scheme as described in Equations (1.32) and (1.33).
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The computational flow chart, shown in Figure 1.15, determines the absorbed power depo-
sition, which includes the heating of blood vessels to achieve an optimal treatment. The flow
chart to find the optimal solutions is used in this section. Figure 1.16a-e is the optimal tem-
perature distributions on the planes 4 mm away from the front boundary, the middle, the
back boundary, and 4 mm away from the back boundary of the treated region, respectively,
and Figure 1.16f-h is the absorbed power depositions on the planes of the front boundary, the
middle, and the back boundary of the treated region, respectively, for a blood perfusion of
0.5 kg/m3/s and a blood flow velocity of 320 mm/s in the level 1 vessel. Figure 1.16a shows
that the temperature is approximately 40.0 �C near the treated region and displays a cold spot
at the center which is due to a level 1 artery blood vessel running perpendicular inwards to
the plane. At its southeastern diagonal direction about 2.8 mm away from the level 1 artery, a
level 1 vein is running in an opposite direction outwards to the plane. The vein appears to be
collecting some thermal energy by convection through the treated region. Figure 1.16b shows
that the temperature on the boundary of the treated region is close to ideal temperature
(43 �C), and there are steep thermal gradients near the level 2 artery running upwards from
the center point. As seen in Figure 1.16f, large amounts of thermal power were deposited on
level 2, 3, and 5 arteries. The maximum thermal power deposition is approximately
3.7�106 W/m3. Figure 1.16c shows that the temperature in the treated region is close to ideal

Initial input:
uniform power deposition

in treated region

Governing equations
(FCBVNM) to calculate
temperature distribution

Initial and boundary
conditions

Ideal temperature
distribution

Adjust power
deposition in

treated region

Difference between
calculated and ideal temperature

≤ 10% of  43 – 37 °C

Optimized temperature
and absorbed power

deposition

No

Yes

Pn+1(x,y,z) = Pn(x,y,z) + Δ P(x,y,z)
Δ P(x,y,z) = C•Δ T(x,y,z)

FIGURE 1.14 The flow chart of optimization used in this study. The absorbed power deposition in the desired
treated cube (20 mm in each dimension) is adjusted locally in order to achieve an ideal therapeutic temperature of
43 �C uniformly for the entire cube.
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temperature, while high temperature appears outside of the treated region due to a level 6
artery carrying convective thermal energy leftwards. It illustrates that thermally significant
blood vessels within the treated region have effectively been heated and carried the convec-
tive thermal energy out of the region. Figure 1.16c also shows maximum temperature located
on (or near) the left-side artery branch node of level 5 and 6 arteries in the treated region.
Figure 1.16g shows that large thermal power is deposited on the corner of the treated region,
which is an area with dense blood vessels (level 3, 4, and 5 arteries and veins). In Figure 1.16d,
the temperature distribution at the back boundary of the treated region shows that a cold spot
is found near the northwestern corner of the heated region. The spot is 1.7 �C below the ideal
temperature, and it is caused by the level 4 vein flowing into the heated region. As expected,
Figure 1.16h shows a large amount of thermal power deposited on the same corner as shown
in Figure 1.16g to compensate the heat loss caused by vessels. Dense blood vessels act as
energy sinks, and a large amount of thermal power deposition is required in that area in order
to maintain the local temperature at the desired level. Figure 1.16e, temperature on the plane
4 mm away from the back boundary of the heated region, shows some hot spots, and these
spots are approximately 42 �C. One spot, located in the northeastern direction more than
4 mm away from the heated region, has a temperature of about 38.3 �C. Those hot spots
are caused by arteries carrying hot blood flow.

Governing equations
(FCBVNM)to calculate

temperature distribution

Difference between
calculated and ideal temperature

£ 10% of 43 – 37 °C

Adjust power
deposition in

treated region

No

Yes

Initial and boundary
conditions

Ideal temperature
distribution at tissue

and blood

Initial input:
uniform power deposition

in treated region

Pn+1 (x,y,z) = Pn (x,y,z) + P(x,y,z)

P(x,y,z) = C• T(x,y,z)

Optimized temperature and
absorbed power deposition
(for both tissue and blood)

FIGURE 1.15 The computational flow chart to find the optimal power and temperature distributions during
hyperthermia.
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FIGURE 1.16 Temperatures and absorbed power depositions for a blood perfusion rate of 0.5 kg/m3/s after opti-
mization with fine spatial power deposition. The ideal temperature is set to be 43 �C, and the blood flow velocity is
about 320 mm/s in level 1 vessel. (a-e) are the temperature distributions at x¼38 mm (4 mm away from the front
boundary), x¼42 mm (the front boundary), x¼52 mm (themiddle of the treated region), x¼62 mm (the back bound-
ary), and x¼66 mm (4 mm away from the back boundary) planes, respectively. (f-h) are the absorbed power depo-
sitions at x¼42, 52, and 62 mm planes, respectively, after optimization (units in figure, t: �C and power: W/m3).
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1.5.2 Optimization with Lumped Power Deposition: Uniform Absorbed
Power Deposition in the Treated Tumor Region

To investigate the spatial resolution of absorbed power deposition on the temperature dis-
tribution, a uniform power deposition in the entire desired treated tumor region is applied.
Two important parameters need to be introduced for this optimization. One is cost function
and the other is the power coefficient. Cost function at nth iteration is set to be

Cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

All target nodes
T x, y, zð Þ�43�Cð Þ2

q
, with ΔCn+1¼Cn+1�Cn, and the absorbed power

is Pn+1¼Pn+hcoef �ΔCn with the coefficient hcoef. hcoef is the updated power coefficient, with
a constant value of 3050. It is chosen based on a smoothly converging (i.e., no oscillating)
search andwith less computational time required during optimization. The optimization pro-
cess will be terminated when ΔCn is smaller than 10�4. Optimization of uniform power depo-
sition allows the attention to be focused on the effect of the vasculature on the temperature
distribution.

To investigate the effect of lumped power deposition on the resulting temperature distri-
bution, a uniform power deposition for the entire treated region is used. This represents the
limitation of the heating system to tune its power spatially fine enough to meet the treatment
requirement. Figure 1.17a-e is the optimized temperature distributions on the planes of 4 mm
away from the front boundary, the front boundary, the middle, the back boundary, and 4 mm
away from the back boundary of the treated region, respectively, and Figure 1.17f-h is
absorbed power depositions on the planes of the front boundary, the middle, and the back
boundary, respectively, for a blood perfusion of 0.5 kg/m3/s and a blood flow velocity of
320 mm/s in the level 1 vessel. The initial guess of the uniform power deposition in the trea-
ted region was 105 W/m3, and the optimized absorbed power deposition was obtained as the
difference (ΔCn) between two successive cost function valueswas smaller than 10�4.With this
optimization of lumped power deposition, the temperatures shown in Figure 1.17b-d indi-
cates that the temperatures in the treated region are highly inhomogeneous, with a temper-
ature about 3 �C below the desired therapeutic temperature in the places near the boundary
planes. These temperature distributions show that blood flow of vessels results in signifi-
cantly lower temperature strips along the vessels in the treated region, particularly a large
vessel located at the boundary of the treated region.

1.5.3 Effect of Blood Perfusion and Blood Flow Rates on the Optimization

As blood perfusion increases, the flow rates in vessels get higher due to the conservation of
blood mass, and the higher flow rate will produce a stronger thermal impact on the treated
region. Figure 1.18 shows temperature and power depositions for a blood perfusion of 2.0 kg/
m3/s and a blood flow velocity about 1280 mm/s in level 1 blood vessel. Figure 1.19 shows
temperature and power depositions for a blood perfusion of 0.123 kg/m3/s and a blood flow
velocity of about 80 mm/s in a level 1 blood vessel, which in size and blood flow velocity of
vessel is identical to dog data from CH [3]. The optimized power deposition pattern is similar
to, but with a higher or lower value than, that shown in Figure 1.15, and the temperature dis-
tribution shows that uniform temperature close to the ideal value can be obtained in the
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FIGURE 1.17 Temperatures and absorbed power depositions for a blood perfusion rate of 0.5 kg/m3/s after opti-
mizationwith lumped power deposition. The ideal temperature is set to be 43 �C, and the blood flow velocity is about
320 mm/s in level 1 vessel. (a-e) are the temperature distributions at x¼38 mm (4 mmaway from the front boundary),
x¼42 mm (the front boundary), x¼52 mm (the middle of the treated region), x¼62 mm (the back boundary),
and x¼66 mm (4 mm away from the back boundary) planes, respectively. (f-h) are the absorbed power depositions
at x¼42, 52, and 62 mm planes, respectively, after optimization (units in figure, t: �C and power: W/m3).
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FIGURE 1.18 Temperatures and absorbed power depositions for a blood perfusion rate of 2.0 kg/m3/s after opti-
mization with fine spatial power deposition. The ideal temperature is set to be 43 �C, and the blood flow velocity is
about 1280 mm/s in level 1 vessel. (a-e) are the temperature distributions at x¼38 mm (4 mm away from the front
boundary), x¼42 mm (the front boundary), x¼52 mm (middle of the treated region), x¼62mm (the back boundary),
and x¼66 mm (4 mm away from the back boundary) planes, respectively, after optimization. (f-h) are the absorbed
power depositions at x¼42, 52, and 62 mm planes, respectively, after optimization (units in figure, t: �C and power:
W/m3).
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FIGURE 1.19 Temperatures and absorbed power depositions for a blood perfusion rate of 0.123 kg/m3/s after
optimization with fine spatial power deposition. The ideal temperature is set to be 43 �C, and the blood flow velocity
is about 80 mm/s in level 1 vessel. (a-e) are the temperature distributions at x¼38 mm (4 mm away from the front
boundary), x¼42 mm (the front boundary), x¼52 mm (middle of the treated region), x¼62 mm (the back boundary),
and x¼66 mm (4 mm away from the back boundary) planes, respectively, after optimization. (f-h) are the absorbed
power depositions at x¼42, 52, and 62 mm planes, respectively, after optimization (units in figure, t: �C and power:
W/m3).



treated region except for some cold spots which are produced by the arteries, the same as in
the case of 0.5 kg/m3/s.

Smooth and homogeneous temperatures in treated tumor volume could be achieved easily
with less power deposition by using preheating [62]. Furthermore, for a better homogeneous
temperature distribution in the treated region, modification of an adaptive optimization
scheme is required [63].

1.5.4 Optimization Without Thermally Significant Blood Vessels
in the Tissues

The PBHTE is used to investigate temperature and absorbed power deposition in the trea-
ted region for the conditionwithout thermally significant blood vessels. A uniform blood per-
fusion rate of 0.5 kg/m3/s in the entire tissue was studied using the optimization.
Figures 1.20a and e show two unheated parallel temperature distribution planes next to
the front boundary plane at 1 and 2 discretization steps. Figures 1.20f-h show the optimized
power deposition on the front boundary, the middle, and the back boundary planes, respec-
tively. Most of the power is deposited on the corners and edges of the treated region to com-
pensate for thermal energy loss through conduction due to the strong conductive effects near
corners and edges. The deposited power pattern of Figure 1.20h is identical to that shown in
Figure 1.20f, and Figure 1.20g (the middle plane of the treated region) shows that there is less
power deposited on corners and center area as compared to Figure 1.20f (front boundary
plane). It indicates that the thermal diffusion rate is much smaller in the middle region.
Figures 1.20b-d show a very uniform therapeutic temperature distribution on the front
boundary, themiddle, and the back boundary planes, respectively, in the treated region. They
can be achieved as there are no thermally significant blood vessels present.

1.5.5 Conclusion

To produce a uniform therapeutic temperature distribution in the desired treated region
while minimizing the overheating of the surrounding normal tissue is desirable for hyper-
thermia treatment. To reach this goal requires a powerful heating system that is able to
deposit power in the treated region to raise the temperature of the entire treated region up
to the desired value and overcome the loss of energy by blood perfusion, boundary conduc-
tion, and blood flow from the vasculature. The temperature results after optimization show
the cold spots and/or cold strips along the blood vessels. These temperatures display the tre-
mendous effects of blood vessels on the resulting heating temperature and the limitation of
heating systems. A powerful heating systemwith fine spatial resolution for power deposition
has a better ability to deliver suitable power to locally overcome the convective effect caused
by the thermally significant vessels. Although a heating systemwith fine power deposition is
a very important factor during treatment, the complexity of existing thermally significant
blood vessels plays a crucial role in successful hyperthermia treatments. This complexity
is related to mass flow rates, inlet temperatures, and directions of vessels. Therefore, prior
to hyperthermia treatments, thermally significant blood vessels should be identified and han-
dled carefully in order to reduce their cooling effects on the treated region, particularly to
those vessels flowing into the treated region.
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POWER
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202,317

15 43.39
42.96
42.54
42.11
41.69
41.26
40.83
40.41
39.98
39.56
39.13
38.70
38.28
37.85
37.43

14
13
12
11
10
9
8
7
6
5
4
3
2
1

188,829
175,341
161,853
148,366
134,878
121,390
107,902
94,414.4
80,926.7
67,438.9
53,951.1
40,463.3
26,975.6
13,487.8

t

FIGURE 1.20 Temperatures and absorbed power depositions for a blood perfusion rate of 0.5 kg/m3/s with no
vasculature present and after optimization with fine spatial power deposition. The ideal temperature is set to be
43 �C. (a-e) are the temperature distributions at x¼38 mm (4 mmaway from the front boundary), x¼42 mm (the front
boundary), x¼52 mm (middle of the treated region), x¼62 mm (the back boundary), and x¼66 mm (4 mm away
from the back boundary) planes, respectively, after optimization. (f-h) are the absorbed power depositions at
x¼42, 52 and 62 mm planes, respectively, after optimization (units in figure, t: �C and power: W/m3).
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