
mathematics

Article

Numerical Investigation of Freely Falling Objects
Using Direct-Forcing Immersed Boundary Method

Cheng-Shu You 1, Ming-Jyh Chern 2 , Dedy Zulhidayat Noor 3 and Tzyy-Leng Horng 1,*
1 Department of Applied Mathematics, Feng Chia University, Taichung 40724, Taiwan; csyou@mail.fcu.edu.tw
2 Department of Mechanical Engineering, National Taiwan University of Science and Technology,

Taipei 106, Taiwan; mjchern@mail.ntust.edu.tw
3 Department of Mechanical Engineering, Institute Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;

zulnoor@me.its.ac.id
* Correspondence: tlhorng@fcu.edu.tw

Received: 29 July 2020; Accepted: 15 September 2020; Published: 18 September 2020
����������
�������

Abstract: The fluid-structure interaction of solid objects freely falling in a Newtonian fluid was
investigated numerically by direct-forcing immersed boundary (DFIB) method. The Navier–Stokes
equations are coupled with equations of motion through virtual force to describe the motion of solid
objects. Here, we rigorously derived the equations of motion by taking control-volume integration of
momentum equation. The method was validated by a popular numerical test example describing the
2D flow caused by the free fall of a circular disk inside a tank of fluid, as well as 3D experimental
measurements in the sedimentation of a sphere. Then, we demonstrated the method by a few more
2D sedimentation examples: (1) free fall of two tandem circular disks showing drafting, kissing and
tumbling phenomena; (2) sedimentation of multiple circular disks; (3) free fall of a regular triangle,
in which the rotation of solid object is significant; (4) free fall of a dropping ellipse to mimic the
falling of a leaf. In the last example, we found rich falling patterns exhibiting fluttering, tumbling,
and chaotic falling.

Keywords: fluid-structure interaction; direct-forcing immersed boundary method; equation of
motion; circular disk sedimentation; tandem circular disks sedimentation; multiple circular disks
sedimentation; falling triangle; falling ellipse

1. Introduction

The falling of light objects, such as feathers or leaves in fluids, driven by gravity and hydrodynamic
force, poses an intractability in fluid dynamics. The embedded nonlinearity often results in complicated
falling patterns and chaotic trajectories. Several experimental and numerical works have been
conducted to study the extensive dynamics of freely falling objects. Experiments conducted by
Belmonte et al. [1] and Mahadevan et al. [2] focused on thin flat strips and tumbling cards falling
through a fluid in a vertical cell. Through experiments and numerical simulations of 2D incompressible
Navier–Stokes equations, Pesavento and Wang [3] analyzed the aerodynamics of a freely falling ellipse,
a setup akin to a leaf or business card falling in air.

The investigation into the unsteady aerodynamics of fluttering and tumbling plates formed the
core work of Andersen et al. [4]. By varying the thickness-to-width ratio and the dimensionless
moment of inertia, they were able to capture the transitions among fluttering, tumbling, and steady
fall for the free fall of a plate. Jin and Xu [5] studied the unsteady aerodynamics associated with
freely falling elliptical and rectangular plates both experimentally and numerically. In their discovery,
they showed that the difference in trajectories between elliptical and rectangular plates was a nuance.
The distinction, attributable to the geometry of plates, was observed in the angular velocity, in which

Mathematics 2020, 8, 1619; doi:10.3390/math8091619 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-7815-9455
http://dx.doi.org/10.3390/math8091619
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1619?type=check_update&version=2


Mathematics 2020, 8, 1619 2 of 20

the rectangular plate was found to rotate at a much slower rate than the elliptical one. Though the
falling of solids with a slender shape, like ellipse and rectangular plate exhibits richer falling patterns,
here, we managed to study this sedimentation hydrodynamics staring from a circular disk to a triangle
and, finally, to an ellipse by decreasing the symmetry in shape using our long-term developing
direct-forcing immersed boundary (DFIB) method [6–8]. To avoid repetition, the fundamental idea of
DFIB method, together with its benchmark testing and error analysis, is referred to Reference [6–8].
Besides free falling of a single solid object, sedimentation of multiple solid particles has long been
an interesting and fundamental subject bearing many significant industrial applications, such as
paper making, specialty chemicals, petroleum, bioengineering, pharmaceuticals, biomass gasification,
and combustion. Even today, it is still under extensive and intensive study theoretically, numerically,
and experimentally [9–14]. This motivated us to study sedimentation of multiple circular disks here in
order to understand interaction dynamics among solids, besides fluid-solid interaction, during settling.

The rest of this paper is organized as follows. The basic idea of DFIB approach for solving
fluid-structure-interaction (FSI) problems is described in Section 2 with the coupled equations of
motion for a freely falling solid object rigorously derived by control-volume integration of momentum
equations. In Section 3, we validated DFIB method by a popular numerical test example describing the
2D flow caused by the free fall of a circular disk inside a tank of fluid [15], as well as 3D experimental
sedimentation measurements of a sphere [16]. In Section 4, sedimentation of two circular disks in
tandem and multiple circular disks in arrays, showing drafting, kissing, and tumbling phenomena,
was computed to demonstrate our DFIB method. Section 5 shows the computation of free fall of a
regular triangle, where the rotation is as significant as displacement in the motion of solid due to
the breaking of rotational symmetry possessed by a circular disk. The falling pattern starts to show
minor fluttering and tumbling behaviors. The rotational effect is further studied by the free fall of
a dropping ellipse to mimic the falling of a leaf. We found its falling patterns exhibiting fluttering,
tumbling, and chaotic falling, which are particularly sensitive to the aspect ratio of ellipse and density
ratio between solid and fluid. Finally, a conclusion is given at end.

2. Mathematical Model and Numerical Method

In the present work, we employed the DFIB approach developed in Reference [6–8] for all 2D and
3D FSI computations. A virtual force is added to the incompressible Navier–Stokes equations in order
to accommodate the interaction between solid and fluid. A solid body, immersed in fluid, is identified
by a volume-of-solid (VOS) function, η, which denotes the volume fraction of solid within a numerical
cell. For a cell full of solid, η is equal to 1, while it becomes 0 for a fluid-filled cell, as shown in Figure 1.
It would be fractional in a cut cell, consisting of both solid and fluid. With this notation, we describe
DFIB method as follows.

Figure 1. A schematic diagram of solid and fluid distinguished by a volume of solid (VOS) function η.

2.1. DFIB Method

The spirit of DFIB method is treating a rigid solid object immersed in fluid same as ambient fluid
but with a prescribed velocity following equations of motion. This idea is achieved by applying an
extra virtual force in momentum equations to enforce the fluid within the solid domain to follow



Mathematics 2020, 8, 1619 3 of 20

prescribed solid-object velocity [7,8]. The mechanics would then be totally equivalent to a rigid solid
object interacting with its surrounding fluid. By doing so, we can avoid using traditional body-fitted
methods, such as arbitrary Lagrangian-Eulerian (ALE) method [17–19], which is generally less easy to
implement. More specifically, the incompressible Navier–Stokes equations under this framework are
expressed as

∇ · u = 0, (1)

∂u
∂t

+∇ · (uu) = − 1
ρ f
∇(p + ρ f gz) + ν∇2u + η f , (2)

where u, ρ f , p, and ν are velocity, density, pressure, and kinematic viscosity of fluid; g is the
gravitational acceleration. Note that, in Equation (2), the virtual force f is exerted only on the
solid domain by volume-of-solid function η.

Traditionally, a time-splitting scheme together with pressure increment projection method,
implemented by finite difference method in staggered grids, is used to advance velocity from nth
to (n + 1)th time level with un+1 satisfying Equation (1). Here, in DFIB method [6–8], we advance
velocity from un to the intermediate time level u∗∗, instead of un+1, with u∗∗ satisfying Equation (1).
This is because velocity in solid domain, Ωs, has not yet satisfied prescribed solid object velocity. To do
so, virtual force is recruited for the advancement of u∗∗ to un+1 such that u in Ωs would comply with
prescribed solid object velocity,

un+1 − u∗∗

∆t
= η f n+1/2. (3)

Note that, with the virtual force accompanied by VOS, η, in Equation (3), we know this update
of velocity to un+1 would only be effective for solid domain. This leaves un+1 = u∗∗, satisfying
divergence-free condition, for fluid domain. With prescribed velocity for the solid object, denoted
by us, known in advance through equations of motion shown later, we can reciprocally calculate the
virtual force by letting un+1 = un+1

s in Ωs in Equation (3) and obtain

η f n+1/2 =
un+1 − u∗∗

∆t
=

un+1
s − u∗∗

∆t
. (4)

Physically, the negative of volume integration of virtual force, η f , would be the resultant force exerted
on the solid object by fluid:

F = −
∫∫∫

Ω
ηρ f f dV. (5)

This computation of resultant force would request complicated surface integration of pressure and
viscous stress if we otherwise use traditional body-fitted methods.

2.2. Equations of Motion Governing the Movement of an Immersed Solid

The prescribed velocity at each solid cell us in Equation (4) has to follow the equations of motion
governing the free-fall dynamics of solid objects. The motion of a solid object is tracked in a Lagrangian
frame by linear and angular momentum equations, that delivers center-of-mass and angular velocities
for solid object. That means we can decompose us at each solid cell into rigid-body translational and
rotational components as follows.

us = vs + ωs × r, (6)

where vs is the center-of-mass velocity of solid object, and ωs is its angular velocity around a rotational
axis through center of mass. r is the position vector of a solid cell with respect to center of mass. vs and
ωs further provide position and rotating angle of the solid object by time integration.



Mathematics 2020, 8, 1619 4 of 20

To derive an equation for vs, a control volume integration over Ωs is taken on Equation (2).
Note that the control volume integration of pressure gradient and viscous term over Ωs would be
equivalent to the surface integration of stress τ over Γ by divergence theorem, and it ends up as

dvs

dt

∫∫∫
Ωs

ρ f dV =
∫∫

Γ
τ · n dA +

∫∫∫
Ωs

ρ f g dV +
∫∫∫

Ωs
ρ f f dV. (7)

With regard to the solid object, its equation of motion for translation takes the form as

dvs

dt

∫∫∫
Ωs

ρs dV =
∫∫

Γ
τ · n dA +

∫∫∫
Ωs

ρsg dV. (8)

Since the surface drag term
∫∫

Γ τ · n dA in Equations (7) and (8) is usually unknown a priori, taking a
difference between Equations (7) and (8) would eliminate it and result in

dvs

dt

∫∫∫
Ωs

ρs dV =
∫∫∫

Ωs
(ρs − ρ f )g dV −

∫∫∫
Ωs

ρ f f dV +
dvs

dt

∫∫∫
Ωs

ρ f dV, (9)

where gravity and buoyancy are denoted by the first term of the right hand side, and hydrodynamic
drag is represented by the negative of virtual force in the second term. The last term denotes a fluid
inertia term. We can further express Equation (9) as

ms
dvs

dt
= (ms −m f )g −

∫∫∫
Ω

ηρ f f dV + m f
dvs

dt
, (10)

where ms and m f denote the mass of solid object and and its replacement by fluid, respectively,
with expressions

ms =
∫∫∫

Ωs
ρs dV =

∫∫∫
Ω

ηρs dV (11)

and

m f =
∫∫∫

Ωs
ρ f dV =

∫∫∫
Ω

ηρ f dV. (12)

We can then discretize Equation (10) in time with f n+1/2 ≈ 3
2 f n − 1

2 f n−1, which is equivalent
to employ 2nd-order-accurate Adams-Bashforth scheme for the virtual force term, and the
equation becomes

ms
vn+1

s − vn
s

∆t
= (ms −m f )g −

(3
2

∫∫∫
Ωs

ρ f f n dV − 1
2

∫∫∫
Ωs

ρ f f n−1 dV
)
+ m f

vn
s − vn−1

s
∆t

. (13)

Note that the fluid inertia term is discretized by lagging with a time step on purpose. Without this
lagging, the initial acceleration felt by solid at a quiescent environment would be g instead of the
correct

ms−m f
ms

g on account of buoyancy. This lagging is comprehensible, since flow motion is driven
by movement of solid first, as described by Equation (8), and then the response of fluid follows by
Equation (7). Equation (10) can be rewritten in short as

d(msvs)

dt
= f gb + f d +

d(m f vs)

dt
, (14)

where f d and fgb represent the hydrodynamic drag and gravity/buoyancy, respectively.
Similarly, to derive an equation for ωs, we can first take a moment around the axis of

rotation through center of mass on Equation (2). Following similar procedures as Equations (7)–(10),
we can obtain



Mathematics 2020, 8, 1619 5 of 20

d(Is ·ωs)

dt
= Ts +

d(I f ·ωs)

dt
, (15)

where Is and I f are the moment of inertia for the solid object and its fluid replacement, respectively.
The torque Ts acting upon the solid is determined by

Ts = −
∫∫∫

Ω
ηρ f r× f dV. (16)

Equation (16) can be further discretized similar to Equation (13). Once vs and ωs are found, us can
then be determined by Equation (6). The trajectory of every solid cell can be further determined by

dXs

dt
= vs, (17)

and then Ωs(t) can be determined, as well.

2.3. Collision Model

When we compute the free fall of multiple solid objects immersed in fluid, the collision among
solid objects or between solid objects and wall are often inevitable. In computation, the interference
(overlapping) among solid objects or between solid objects and wall during falling could happen,
though in reality this is often prevented by a thin in-between lubrication fluid layer. Unless our
mesh can resolve this thin lubrication layer, which would request a rather exhaustive resolution,
collision model is necessary in practice to avoid possible interferences. Glowinski et al. [15] proposed
a repulsive force model, in which an artificial short-range repulsive force was introduced to make
sure the separation among solid objects and between solid object and wall. Here, we introduce a
simple collision model by designing a repulsion force, which would be activated when body-body or
body-wall collision is in progress.

For simplicity, we only consider solid objects as circular disks here. Assuming there are Np disks
immersed in the fluid and labeled as 1, 2, · · · , Np, we denote the total repulsive force exerted on disk
i by

Fco
i := F p

i + Fw
i :=

Np

∑
j=1,j 6=i

F p
ij +

Nw

∑
j=1

Fw
ij , (18)

where F p
i is the repulsive force between disk i and the others, and Fw

i is the repulsive force between
disk i and walls (labelled as 1, 2, · · · , Nw). F p

ij is the disk-to-disk repulsive force that disk i bears from
disk j. Similarly, Fw

ij is the disk-to-wall repulsive force that disk i bears from wall j.
In the present model, the repulsive force is activated whenever a disk is close enough to

another disk or walls by the introduction of small positive parameters εp, εw to control the size
of the repulsive force and a small distance tolerance δ > 0 for the activation and adjustment of the
force. More specifically, we define the disk-to-disk repulsive force F p

ij, acting along center-to-center
direction on disk i due to the collision with disk j, by [20]

F p
ij =


0, dij > Ri + Rj + δ,

cij

εp

(
X(i)

c − X(j)
c

dij

)(
Ri + Rj + δ− dij

δ

)2

, dij ≤ Ri + Rj + δ,
(19)

where X(i)
c and Ri are center coordinates and radius of disk i; dij is the center-to-center distance

between disks i and j; cij is a scaling factor with a dimension of force. In this simulation, cij is chosen
to be the buoyant force acting on disk i. Similarly, the repulsive force with walls Fw

ij , acting normal to
wall j and through center of disk i is given by [20]



Mathematics 2020, 8, 1619 6 of 20

Fw
ij =


0, d′ij > 2Ri + δ,

cij

εw

(
X(i)

c − X ′ij
dij

)(
2Ri + δ− d′ij

δ

)2

, d′ij ≤ 2Ri + δ,
(20)

where X ′ij is the center coordinates of disk i’s mirror image with respect to the wall j; d′ij is the
center-to-center distance between disk i and its mirror image against wall j.

2.4. Numerical Procedure

The numerical procedure used to compute fluid flow and trace the position and orientation of
falling object at each time step can be summarized in the following steps:

1. Calculate vs and ωs via Equations (14) and (15) and then determine us for each solid cell via
Equation (6).

2. Integrate vs and ωs to obtain center-of-mass position Xs and angle of rotation for solid object and
then determine solid domain Ωs.

3. Determine volume of solid function η through Ωs.
4. Calculate u∗∗ via projection method.
5. Advance to un+1 and compute the virtual force by us via Equations (3) and (4).

3. Numerical Validations

This section presents benchmark testing of current method by sedimentation of a circular disk for
2D flows [15,20,21] and a sphere for 3D flows [16].

3.1. Sedimentation of a Circular Disk

The numerical simulation describing sedimentation of a circular disk released from rest inside a
rectangular enclosure was conducted following the physical setting and geometric configuration of
Glowinski et al. [15]. More specifically, the computational domain is Ω = (0 cm, 2 cm)× (0 cm, 6 cm)

and the disk is located at (1 cm, 4 cm) initially. The densities of fluid and solid are ρ f = 1 g/cm3 and
ρs = 1.25 g/cm3, respectively. The diameter of the disk is D = 0.25 cm and the kinematic viscosity of
the fluid is ν = 0.1 cm2/s. The gravity is g = −981 cm/s2. In current simulations, the computational
domain is discretized by a uniform mesh with the mesh size ∆x = ∆y = 0.025 cm. To capture the
trajectory and orientation of a free-fall solid object accurately, we deliberately choose a rather small time
step in current study, which is much smaller than the time step requested by CFL constraint. For the
current case, we chose ∆t = 10−4 s.

Simulated flow field featured by vorticity contours at various times is shown in Figure 2.
Time traces of disk’s vertical position and velocity were particularly calculated and shown in
Figure 3. Figure 3a,b shows the grid-independence of current computations. Basically, results under
different mesh sizes coincide with each other except the velocity near the hitting of floor in Figure 3b.
Here, we further adopt the result with the finest mesh size in Figure 3a,b to compare with [15,20,21]
and show it in Figure 3c,d. Our result generally bears a good agreement with references mentioned
above, especially with Glowinski et al. [15]. This can be told from the immediate velocity near the
hitting of floor in Figure 3d, where actually none of [15,20,21] is close to one another. From Figure 3d,
the disk is first accelerated by gravity, and then the fluid drag increases as disk’s velocity increases.
When gravity is finally balanced by drag, the velocity of disk reaches its maximum terminal velocity,
which is steady and not altered until hitting the floor. Note that the peak followed by oscillations in
Figure 3d, happening near the hitting of floor in our computation, is because of the usage of collision
model, described in Section 2.3. The peak and following oscillations imply the damping rebounds
from the floor. The collision model is a necessary evil. Without it, falling solid object would generally
penetrate the floor numerically.



Mathematics 2020, 8, 1619 7 of 20

(a) (b) (c) (d)

Figure 2. Flow field featured by vorticity contours at time (a) t = 0.2 s, (b) t = 0.4 s, (c) t = 0.6 s,
and (d) t = 0.8 s.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(a)

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

(b)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(c)

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

(d)

Figure 3. Time traces of (a) y-position and (b) y-velocity of circular disk showing grid independence.
Time traces of (c) y-position and (d) y-velocity of circular disk compared with Reference [15,20,21].



Mathematics 2020, 8, 1619 8 of 20

3.2. Sedimentation of a 3D Sphere

Here, the numerical simulation of sedimentation of a 3D sphere inside a fluid tank was conducted
with physical parameters and geometry settings same as the experiment reported by Cate et al. [16].
The computational domain is set to Ω = (−5 cm, 5 cm) × (−5 cm, 5 cm) × (−12 cm, 4 cm) based
on the rectangular fluid tank of size 10 cm× 10 cm× 16 cm mentioned in experiment. A sphere of
diameter D = 1.5 cm is initially centered at (0 cm, 0 cm, 0.75 cm) and released from rest with its density
being ρs = 1120 kg/m3, slightly larger than the density of ambient fluid. Following the experiment,
various fluid density, ρ f , and dynamic viscosity, µ f , were employed for simulations and are listed
in Table 1 with Reynolds number defined as Re = ρ f U∞D/µ f , in which U∞ is the terminal velocity.
We conducted the numerical simulations in a uniform Cartesian grid with ∆x = ∆y = ∆z = 0.05 cm,
time step ∆t = 10−5 s, and the results are depicted in Figure 4, where the time traces of sphere’s vertical
position and velocity for each case are shown in Figure 4a,b, and a snap shot of vorticity magnitude
contours for the falling sphere is shown in Figure 4c. We find that our numerical results are in excellent
agreements with the experimental data in Reference [16].

0 1 2 3 4 5

time [s]

-8

-6

-4

-2

0

2

z
/D

Cate et al.: Re = 1.5

Cate et al.: Re = 4.1

Cate et al.: Re = 11.6

Cate et al.: Re = 32.2

present: Re = 1.5

present: Re = 4.1

present: Re = 11.6

present: Re = 32.2

(a)

0 1 2 3 4 5

time [s]

-14

-12

-10

-8

-6

-4

-2

0
w

 [
c
m

/s
] Cate et al.: Re = 1.5

Cate et al.: Re = 4.1

Cate et al.: Re = 11.6

Cate et al.: Re = 32.2

present: Re = 1.5

present: Re = 4.1

present: Re = 11.6

present: Re = 32.2

(b)

-11.5-11.5-11.5-11.5-11.5

-11-11-11-11-11

-10.5-10.5-10.5-10.5-10.5

-10-10-10-10-10

-9.5-9.5-9.5-9.5-9.5

-9-9-9-9-9

-4-4-4-4-4

-8.5-8.5-8.5-8.5-8.5

-8-8-8-8-8

-7.5-7.5-7.5-7.5-7.5

-7-7-7-7-7

-6.5-6.5-6.5-6.5-6.5

-6-6-6-6-6

-5.5-5.5-5.5-5.5-5.5

-5-5-5-5-5

-4.5-4.5-4.5-4.5-4.5

-4z [cm] -4z [cm] -4z [cm] -4z [cm] -4z [cm]

-2-2-2-2-2
-11.5-11.5-11.5-11.5-11.5

-11-11-11-11-11

-10.5-10.5-10.5-10.5-10.5

-10-10-10-10-10

44444

-9.5-9.5-9.5-9.5-9.5

-9-9-9-9-9

-8.5-8.5-8.5-8.5-8.5

-8-8-8-8-8

33333

-7.5-7.5-7.5-7.5-7.5

-7-7-7-7-7

0x [cm] 0x [cm] 0x [cm] 0x [cm] 0x [cm]

-6.5-6.5-6.5-6.5-6.5

-6-6-6-6-6

22222

-5.5-5.5-5.5-5.5-5.5

-5-5-5-5-5

-4.5-4.5-4.5-4.5-4.5

-4 z [cm]-4 z [cm]-4 z [cm]-4 z [cm]-4 z [cm]

11111

-3.5-3.5-3.5-3.5-3.5

0
y [cm]

0
y [cm]

0
y [cm]

0
y [cm]

0
y [cm]

22222

-1-1-1-1-1
-2-2-2-2-2

-3-3-3-3-344444
-4-4-4-4-4 0 0.0e+00

7.8e+01

10

20

30

40

50

60

70

V
o
rt

ic
it
y
 M

a
g
n
it
u
d
e

(c)

Figure 4. Time traces of sphere’s (a) vertical position and (b) vertical velocity compared with [16].
(c) A snapshot of vorticity magnitude contours at t = 0.9 with Re = 32.2.



Mathematics 2020, 8, 1619 9 of 20

Table 1. Physical parameters used to simulate the sedimentation of a 3D sphere based on [16].

ρ f [kg/m3] µ f [Ns/ m2] U∞ [m/s] Re

Case 1 970 3.73 3.8 1.5
Case 2 965 2.12 6.0 4.1
Case 3 962 1.13 11.5 11.6
Case 4 960 0.58 12.8 32.2

4. More Sedimentation Simulations by DFIB Method

Here, we further computed the sedimentation of (1) two tandem circular disks and (2) multiple
circular disks to demonstrate current method.

4.1. Sedimentation of Two Tandem Circular Disks

The sedimentation of two tandem circular disks inside a rectangular enclosure is studied here with
the densities of disk and fluid being ρs = 1.5 g/cm3 and ρ f = 1 g/cm3, respectively. The kinematic
viscosity of fluid is set as ν = 0.01 cm2/s. The rectangular enclosure is 2 cm wide and 6 cm long,
and the diameter of the disks is D = 0.25 cm. These two tandem disks are located initially at the top
of the rectangular enclosure with the distance between centers of disks being 0.5 cm, and so the gap
between two disks is 0.25 cm. A uniform mesh of size ∆x = ∆y = 1/128 cm, and time step ∆t = 10−5 s
are used in current simulation. The collision parameter are set as εw = εp = 10−5, and the distance
tolerance δ = 2∆x.

Figure 5 displays movements of two tandem disks with vorticity contours used for flow
visualization. From the outset, these two disks fall in tandem. Eventually, the upper disk falls
faster than the lower one due to the wake of the lower disk, since the low pressure in lower disk’s
wake accelerates the upper one. The hydrodynamic force affects the lower disk as the upper one
approaches, and causes the lower disk to drift a little sideways. Ultimately, the upper disk catches
up with the lower one, and the two disks collide with each other in what is referred to as the kissing
stage. Afterwards, the two disks separate, and then tumble and fall in a side-by-side way. The formerly
lower disk is then pushed sideways and upwards by the tumbling motion, and swaps place with the
formerly upper disk, which now becomes the lower one. If the rectangular enclosure is long enough,
these events would be repeated. The modes of motion delineated above are classified as drafting,
kissing and tumbling, which was first observed experimentally by Fortes et al. [22] and simulated in
two dimensions by Hu et al. [23], Glowinski et al. [15], and Choi [24]. These well-known phenomena
are also predicted by the current DFIB method as shown in Figure 5.

4.2. Sedimentation of Multiple Circular Disks

In order to demonstrate the ability of handling complicated collisions among multiple solid
objects by current DFIB method, we also computed the sedimentation of multiple circular disks here.
A set of 10× 10 identical circular disks are initially placed at the top of a rectangular cavity filled with
incompressible Newtonian fluid, released from rest, fall by gravity, and settle at bottom of cavity at last.
The parameters and geometry configuration are all the same as the previous example in Section 4.1,
except the diameter of disk reduced to be D = 0.15 cm. The complicated sedimentation process of
multiple disks is successfully simulated here, and the result is shown in Figure 6, from which we can
observe those drafting, kissing, and tumbling phenomena mentioned above keep happening among
disks during sedimentation.



Mathematics 2020, 8, 1619 10 of 20

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(a)

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(b)

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(c)

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(d)

Figure 5. The positions of two tandem circular disks and the associated flow velocity field at time
(a) t = 0.15 s, (b) t = 0.20 s, (c) t = 0.25 s, and (d) t = 0.3 s.

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(a)

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(b)

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(c)

0 1 2
0

1

2

3

4

5

6

[cm]

[cm]

(d)

Figure 6. The positions of 10× 10 circular disks during sedimentation and the associated flow velocity
fields at time (a) t = 0 s, (b) t = 0.6 s, (c) t = 1.5 s, and (d) t = 2 s.

5. Sedimentation of Solid Objects without Rotational Symmetry

5.1. Sedimentation of a Regular Triangle

In this example, we consider the sedimentation of a equilateral triangle with edge length
√

3D/2,
where D is the diameter of the circumscribed circle of triangle, in an incompressible viscous fluid.
D is 1 cm here. The regular triangle is initially placed at rest with the center-of-mass position at
(15 cm, 28 cm) in a 30 cm× 30 cm rectangular domain, with an initial angle of attack (AOA), αatt = 5◦.
Note that this small AOA would not affect the asymptotic falling pattern of triangle, but is meant
to break the symmetry in flow field in order to accelerate the development of its falling pattern.



Mathematics 2020, 8, 1619 11 of 20

Otherwise, a regular triangle, placed with symmetry initially, would just steadily fall all the way down,
since the vertical span is not long enough for disturbances to kick in and break flow symmetry. All the
physical parameters are set to be the same as the previous example in Section 4.1. A uniform mesh of
size ∆x = ∆y = 1/64 cm, and time step ∆t = 10−4 s are employed in current simulation.

The numerical results are displayed in Figure 7. Figure 7a shows triangle’s trajectory and
orientation, and Figure 7b–d shows the snap shots of flow field at certain times during the falling.
From that, we can tell the falling pattern is fluttering at the beginning, followed by tumbling at some
tipping point. A MATLAB code for current sedimentation simulation of a regular triangle is attached
at Appendix A for readers further interested in this problem.

0 5 10 15 20
0

5

10

15

20

25

30

[cm]

[cm]

(a) (b) (c) (d)

Figure 7. (a) Falling trajectory and orientation of a regular triangle. Flow field featured by vorticity
contours at time (b) t = 1.2 s, (c) t = 2.1 s, and (d) t = 3 s.

5.2. A Freely Falling Ellipse

It is a common fact that not all objects fall straight down by gravity. For example, a leaf, feather
and paper card all fall in a seemingly unpredictable manner. From time to time, a leaf or feather may
reverse its falling direction and momentarily rise against the gravity as it flutters or tumbles through air.
This rich dynamical behavior has been investigated in many experimental and modeling works, e.g.,
Reference [1,3,5,25,26]. Numerical simulations regarding a freely falling rectangular or elliptical plate,
to mimic a falling leaf or feather, have been studied before in Reference [3,5,25,26]. Taking 2D ellipse as
an example, its dynamics can be characterized by the following three dimensionless parameters [3,25]:

• Reynolds number, Re∗ = u∗t a/ν, with u∗t =
√

2bg(ρs/ρ f − 1),

• the dimensionless moment of inertia, I∗ =
(
ρsb(a2 + b2)

)
/(2ρ f a3),

• the aspect ratio of the ellipse, e = a/b, where a and b are the width and thickness of the ellipse,
respectively.

Re∗, I∗, and e can be recast to I, Re, ρs/ρ f , and e, where I =
(
b(a2 + b2)

)
/(2a3), Re = utb/ν,

with ut =
√

bg. The latter set of parameters is more physically intuitive. Note that the dimensionless
moment of inertia without density ratio, I, is actually equivalent to (e2 + 1)/(2e3), which means I
solely depends on e.

Here, we use the current DFIB method to study the falling patterns of a 2D ellipse. The ellipse
is initially placed at rest with its center of mass positioned at (5 cm, 28 cm) in a 30 cm × 30 cm
rectangular domain, with an initial AOA, αatt = 45◦. A uniform mesh of size ∆x = ∆y = 1/100 cm,
and time step ∆t = 10−5 s were employed in current simulation. We fixed the density of fluid
to be ρ f = 1.0 g/cm3 and changed ρs to vary the density ratio between solid and fluid. We also
fixed b = 0.162 cm and varied a to generate various aspect ratios e. Through exhaustive surveys,
three combinations of dimensionless parameters as shown in Table 2 were employed in simulations to
demonstrate three typical falling patterns: fluttering, chaotic falling, and tumbling [3,25]. The trajectory



Mathematics 2020, 8, 1619 12 of 20

of ellipse together with its orientation for these three falling patterns was calculated and is shown in
Figure 8. The associated vortex shedding and wake structure of these three falling patterns are shown
respectively in Figures 9–11.

Table 2. Physical parameters employed for three falling patterns of ellipse.

Re∗ I∗ e ρs/ρ f ν [cm2/s] Re

fluttering 1000 0.08 8 1.2603 0.0118 173.2413
chaotic falling 1000 0.16 8 2.5206 0.0285 71.6779
tumbling 1000 0.25 8 3.9385 0.0396 51.5626

In Table 2, e is equally set to 8. This is because we found a falling ellipse is more probable to
exhibit all three typical falling patterns at a larger e. In addition, the equal setting of e implies an equal
setting of I, as well. We further discovered the falling pattern is more sensitive to density ratio, ρs/ρ f ,
and less sensitive to viscosity ν. By increasing the density ratio gradually, we explored fluttering,
chaotic falling, and tumbling, respectively. Generally larger density ratio implies larger driving force
and torque, which tends to rotate the ellipse more severely during falling. This can be seen from
maximum AOA hardly reaching 90◦ in fluttering as shown in Figure 8a, but its counterparts in chaotic
falling and tumbling can pass 90◦ during falling as shown in Figure 8b,c.

0

10

20

30

[cm]

Figure 8. Falling trajectory and orientation of ellipse. (a) Fluttering, (b) chaotic falling, (c) tumbling.

(a) (b) (c) (d)

Figure 9. Wake structure in vorticity contours at time (a) t = 2.5 s (b) t = 3 s, (c) t = 3.5 s, and (d) t = 4 s.
This corresponds to the fluttering mode in Figure 8a.



Mathematics 2020, 8, 1619 13 of 20

(a) (b) (c) (d)

Figure 10. Wake structure in vorticity contours at time (a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s,
and (d) t = 1.5 s. This corresponds to the chaotic falling mode in Figure 8b.

(a) (b)

(c) (d)

Figure 11. Wake structure in vorticity contours at time (a) t = 0.2 s, (b) t = 0.4 s, (c) t = 0.8 s,
and (d) t = 1.6 s. This corresponds to the tumbling mode in Figure 8c.



Mathematics 2020, 8, 1619 14 of 20

6. Summary and Conclusions

The current DFIB approach successfully predicted the interaction between falling solid objects and
fluid through simulation cases demonstrated above, with some of them validated with the literature.
The method is efficient to calculate the resultant force and torque exerted on the solid object and
determine its displacement and orientation at each time step. Among all sedimentation cases studied
here, rotation becomes important for the sedimentation of a regular triangle and an ellipse due to the
breaking of rotational symmetry. The sedimentation of a regular triangle, which is rarely discussed
in the literature, shows a falling pattern of fluttering at the beginning, followed by tumbling starting
at some tipping point. The sedimentation of an ellipse has the richest dynamics here. With various
combinations of physical parameters, our simulation exhibits three typical falling patterns: fluttering,
tumbling, and chaotic falling. Animations of sedimentation simulations in current paper can be found
at https://www.youtube.com/channel/UC9Qz6kOB-WVFnwijBHZRfVA/.

Author Contributions: T.-L.H. and M.-J.C. chiefly contributed to numerical method development and paper
writing; C.-S.Y. and D.Z.N. mainly contributed to numerical simulations. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan with grant numbers:
MOST 107-2115-M-035-007-MY2 (Cheng-Shu You), MOST 107-2221-E-011-075-MY3 (Ming-Jyh Chern), and MOST
108-2115-M-035-002-MY2 (Tzyy-Leng Horng).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

A MATLAB code based on present DFIB method for the case of sedimentation of a regular triangle
discussed in Section 5.1 is provided as follows.

Main program:

% Initiallize the parameters of the simulation
nu = 0.01; % cm^2/s
% Create the mesh
lx = 30; ly = 30; n = 64;
Th = RectangleMesh([0, lx, 0, ly], lx*n, ly*n);
% Create the triangle object
r = 0.5; % radius of the circumscribed circle
edge_length = sqrt(3)*r;
angle_of_attack = 5*pi/180;
center_of_mass = [15, 28];
rho_s = 1.5;
tri = TriangleObject(Th, center_of_mass, edge_length, r, angle_of_attack, rho_s);
% Time setting
dt = 1e-4;
nt = 50000;
% Boundary condition
UN = 0; VN = 0;
US = 0; VS = 0;
UE = 0; VW = 0;
UW = 0; VE = 0;
% Initialize
[u, v, p] = initialize(Th, UW, UE, US, UN, VW, VE, VS, VN);
u_old = u; v_old = v;
% DFIB
curtime = 0;

https://www.youtube.com/channel/UC9Qz6kOB-WVFnwijBHZRfVA/


Mathematics 2020, 8, 1619 15 of 20

for iter = 1:nt
curtime = curtime + dt;
fprintf('current time: %f\n', curtime)
% Move the object to next time level
tri.move(dt);
% Preprocessing
dpdx = diff(p, 1, 1)/Th.hx; dpdy = diff(p, 1, 2)/Th.hy;
[H1, H2] = H(u, v, nu, Th.hx, Th.hy);
[H1_old, H2_old] = H(u_old, v_old, nu, Th.hx, Th.hy);
% Solve the intermediate velocity
u_old = u; v_old = v;
u(2:end-1, 2:end-1) = u(2:end-1, 2:end-1) + dt*(-dpdx + 1.5*H1 - 0.5*H1_old);
v(2:end-1, 2:end-1) = v(2:end-1, 2:end-1) + dt*(-dpdy + 1.5*H2 - 0.5*H2_old);
u = updateBC_u(u, UW, UE, US, UN); v = updateBC_v(v, VW, VE, VS, VN);
% Solve the Poisson system
S = diff(u(:, 2:end-1), 1, 1)/Th.hx + diff(v(2:end-1, :), 1, 2)/Th.hy;
phi = FFT_Poisson_solver(S/dt, Th.hx, Th.hy);
% Projection step
u(2:end-1, 2:end-1) = u(2:end-1, 2:end-1) - dt*diff(phi, 1, 1)/Th.hx;
v(2:end-1, 2:end-1) = v(2:end-1, 2:end-1) - dt*diff(phi, 1, 2)/Th.hy;
% update pressure
p = p + phi;
% update virtual force
tri.computeVirtualForce(u, v, dt);
% update velocity
u(:, 2:end-1) = tri.eta1 .* tri.us + (1-tri.eta1).*u(:, 2:end-1);
v(2:end-1, :) = tri.eta2 .* tri.vs + (1-tri.eta2).*v(2:end-1, :);

end

Subroutines:

function [u, v, p] = initialize(Th, UW, UE, US, UN, VW, VE, VS, VN)
u = zeros(Th.nx+1, Th.ny+2); v = zeros(Th.nx+2, Th.ny+1); p = zeros(Th.nx, Th.ny);
u = updateBC_u(u, UW, UE, US, UN); v = updateBC_v(v, VW, VE, VS, VN);
end

function [H1, H2] = H(u, v, nu, hx, hy)
[uconv, vconv] = convection_div(u, v, hx, hy);
ulap = laplacian(u, hx, hy); vlap = laplacian(v, hx, hy);
H1 = nu*ulap - uconv; H2 = nu*vlap - vconv;
end

function [Nu, Nv] = convection_div(u, v, hx, hy)
uce = (u(1:end-1,2:end-1) + u(2:end,2:end-1))/2;
uco = (u(:,1:end-1) + u(:,2:end))/2;
vco = (v(1:end-1,:) + v(2:end,:))/2;
vce = (v(2:end-1,1:end-1) + v(2:end-1,2:end))/2;
uuce = uce.*uce; uvco = uco.*vco; vvce = vce.*vce;
Nu = (uuce(2:end,:) - uuce(1:end-1,:))/hx ...

+ (uvco(2:end-1,2:end) - uvco(2:end-1,1:end-1))/hy;
Nv = (vvce(:,2:end) - vvce(:,1:end-1))/hy ...



Mathematics 2020, 8, 1619 16 of 20

+ (uvco(2:end,2:end-1) - uvco(1:end-1,2:end-1))/hx;
end

function lap = laplacian(f, hx, hy)
[m, n] = size(f);
i = 2:m-1; j = 2:n-1;
lap = (f(i+1, j) + f(i-1, j) - 2*f(i,j))/(hx*hx) ...

+ (f(i, j+1) + f(i, j-1) - 2*f(i,j))/(hy*hy);
end

function u = updateBC_u(u, UW, UE, US, UN)
u(1, :) = UW; u(end, :) = UE;
u(:, 1) = (8/3)*US - 2*u(:, 2) + (1/3)*u(:, 3);
u(:, end) = (8/3)*UN - 2*u(:, end-1) + (1/3)*u(:, end-2);
end

function v = updateBC_v(v, VW, VE, VS, VN)
v(:, 1) = VS; v(:, end) = VN;
v(1, :) = (8/3)*VW - 2*v(2, :) + (1/3)*v(3, :);
v(end, :) = (8/3)*VE - 2*v(end-1, :) + (1/3)*v(end-2, :);
end

function uh = FFT_Poisson_solver(fh, hx, hy)
[M, N] = size(fh);
demon = -(2*sin(pi*(0:M-1)'*ones(1, N)./(2*M))./hx).^2 ...

-(2*sin(pi*ones(M, 1)*(0:N-1)./(2*N))./hy).^2;
fhat = dct(dct(fh)')';
uhat = fhat./demon; uhat(1,1) = 0;
uh = idct(idct(uhat)')';
end

classdef RectangleMesh < handle
% RectangleMesh Mesh of the 2D rectangle (x0, y0) x (x1, y1)
properties (SetAccess='private')

domain;
x, y, xc, yc;
Xu, Yu, Xv, Yv, Xc, Yc;
nx, ny, hx, hy;

end

methods
function obj = RectangleMesh(domain, nx, ny)

obj.domain = domain;
obj.x = linspace(domain(1), domain(2), nx + 1);
obj.y = linspace(domain(3), domain(4), ny + 1);
obj.xc = avg(obj.x); obj.yc = avg(obj.y);
obj.nx = nx; obj.ny = ny;
obj.hx = (domain(2) - domain(1)) / nx;
obj.hy = (domain(4) - domain(3)) / ny;
[obj.Xu, obj.Yu] = ndgrid(obj.x, obj.yc);



Mathematics 2020, 8, 1619 17 of 20

[obj.Xv, obj.Yv] = ndgrid(obj.xc, obj.y);
[obj.Xc, obj.Yc] = ndgrid(obj.xc, obj.yc);

end
end
end

Class of regular triangle:

classdef TriangleObject < handle
% Class of Regular triangle
properties

Th, center_of_mass, edge_length, r, angle_of_attack, density;
vx, vy, vel, vel_old;
omega, omega_old; theta, theta_old, us, vs;
eta0, eta1, eta2, eta0_old, eta1_old, eta2_old;
forceX, forceY, forceX_old, forceY_old;
gravity = [0, -981];

end

methods
function obj = TriangleObject(Th, center_of_mass, edge_length, r, ...

angle_of_attack, density)
obj.Th = Th;
obj.center_of_mass = center_of_mass;
obj.edge_length = edge_length;
obj.r = r;
obj.angle_of_attack = angle_of_attack;
obj.density = density;
obj.initialize();
obj.updateEta();

end

function move(obj, dt)
% Compute translational motion
obj.translational_motion(dt);
% Compute rotation motion
obj.rotational_motion(dt)
% Compute center_of_mass at next time level
obj.center_of_mass = obj.center_of_mass + 0.5*dt*(obj.vel + obj.vel_old);
% Compute theta at next time level
obj.theta = obj.theta + 0.5*dt*(obj.omega + obj.omega_old);
% update velocity
r1 = obj.Th.Xv - obj.center_of_mass(1);
r2 = obj.Th.Yu - obj.center_of_mass(2);
obj.us = obj.vel(1) - obj.omega*r2; obj.vs = obj.vel(2) + obj.omega*r1;
% Update body position
obj.update_position();
% Update eta
obj.updateEta();

end



Mathematics 2020, 8, 1619 18 of 20

function computeVirtualForce(obj, u, v, dt)
obj.forceX_old = obj.forceX; obj.forceY_old = obj.forceY;
obj.forceX = obj.eta1.*(obj.us - u(:, 2:end-1))/dt;
obj.forceY = obj.eta2.*(obj.vs - v(2:end-1, :))/dt;

end
end

methods(Access='private')
function initialize(obj)

obj.forceX = zeros(obj.Th.nx+1, obj.Th.ny);
obj.forceY = zeros(obj.Th.nx, obj.Th.ny+1);
obj.forceX_old = obj.forceX; obj.forceY_old = obj.forceY;
vx0 = [-obj.r*cos(pi/6), obj.r*cos(pi/6), 0];
vy0 = [-obj.r*sin(pi/6), -obj.r*sin(pi/6), obj.r];
obj.vx = obj.center_of_mass(1) ...

+ (vx0.*cos(obj.angle_of_attack) - vy0.*sin(obj.angle_of_attack));
obj.vy = obj.center_of_mass(2) ...

+ (vx0.*sin(obj.angle_of_attack) + vy0.*cos(obj.angle_of_attack));
obj.vel = [0, 0]; obj.vel_old = [0, 0];
obj.omega = 0; obj.omega_old = 0; % rad/s
obj.theta = 0; obj.theta_old = 0;
obj.us = 0; obj.vs = 0;

end

function translational_motion(obj, dt)
hx = obj.Th.hx; hy = obj.Th.hy;
HFX = trapz(trapz(obj.forceX,1)*hx, 2)*hy;
HFY = trapz(trapz(obj.forceY,1)*hx, 2)*hy;
HFX_old = trapz(trapz(obj.forceX_old, 1)*hx, 2)*hy;
HFY_old = trapz(trapz(obj.forceY_old, 1)*hx, 2)*hy;
area = (sqrt(3)*obj.edge_length*obj.edge_length)/4;
Ms = obj.density*area; Mf = 1.0*area;
vel_1_ = obj.vel(1) + dt*((1-Mf/Ms)*obj.gravity(1) ...

- (1.5*HFX - 0.5*HFX_old)/Ms ...
+ (Mf/Ms)*(obj.vel(1) - obj.vel_old(1))/dt);

vel_2_ = obj.vel(2) + dt*((1-Mf/Ms)*obj.gravity(2) ...
- (1.5*HFY - 0.5*HFY_old)/Ms ...
+ (Mf/Ms)*(obj.vel(2) - obj.vel_old(2))/dt);

obj.vel_old = obj.vel; obj.vel = [vel_1_, vel_2_];
end

function rotational_motion(obj, dt)
hx = obj.Th.hx; hy = obj.Th.hy;
r1 = obj.Th.Xc - obj.center_of_mass(1);
r2 = obj.Th.Yc - obj.center_of_mass(2);
torque = getTorque(avg(obj.forceX), avg(obj.forceY')', r1, r2);
torque_old = getTorque(avg(obj.forceX_old), avg(obj.forceY_old')', r1, r2);
HT = H(1, obj.eta0.*torque, hx, hy);
HT_old = H(1, obj.eta0.*torque_old, hx, hy);



Mathematics 2020, 8, 1619 19 of 20

If = sqrt(3)*obj.edge_length/48;
Is = obj.density*If;
omega_ = obj.omega + dt*(-1.5*HT + 0.5*HT_old)/Is ...

+ (If/Is)*(obj.omega - obj.omega_old);
obj.omega_old = obj.omega; obj.omega = omega_;

end

function update_position(obj)
aoa = obj.angle_of_attack;
vx0 = [-obj.r*cos(pi/6), obj.r*cos(pi/6), 0];
vy0 = [-obj.r*sin(pi/6), -obj.r*sin(pi/6), obj.r];
obj.vx = obj.center_of_mass(1) ...

+ (vx0.*cos(aoa+obj.theta) - vy0.*sin(aoa+obj.theta));
obj.vy = obj.center_of_mass(2) ...

+ (vx0.*sin(aoa+obj.theta) + vy0.*cos(aoa+obj.theta));
end

function updateEta(obj)
obj.eta1 = inpolygon(obj.Th.Xu, obj.Th.Yu, obj.vx, obj.vy);
obj.eta2 = inpolygon(obj.Th.Xv, obj.Th.Yv, obj.vx, obj.vy);
obj.eta0 = inpolygon(obj.Th.Xc, obj.Th.Yc, obj.vx, obj.vy);

end

end
end
% help funtion in this class
function output = getTorque(Fx, Fy, rx, ry)
output = rx.*Fy - ry.*Fx;
end

function output = H(rho, F, hx, hy)
output = sum(sum(rho.*F))*hx*hy;
end

References

1. Belmonte, A.; Eisenberg, H.; Moses, E. From flutter to tumble: inertial drag and froude similarity in falling
paper. Phys. Rev. Lett. 1998, 81, 345–348. [CrossRef]

2. Mahadevan, L.; Ryu, W.S.; Samuel, A.D. Tumbling cards. Phys. Fluids 1999, 11, 1–3. [CrossRef]
3. Pesavento, U.; Wang, Z.J. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass

elevation. Phys. Rev. Lett. 2004, 93, 1–4. [CrossRef] [PubMed]
4. Andersen, A.; Pesavento, U.; Jane Wang, Z. Unsteady aerodynamics of fluttering and tumbling plates.

J. Fluid Mech. 2005, 541, 65–90. [CrossRef]
5. Jin, C.; Xu, K. Numerical study of the unsteady aerodynamics of freely falling plates. Commun. Comput. Phys.

2008, 3, 834–851.
6. Chern, M.-J.; Noor, D.Z.; Liao, C.-B.; Horng, T.-L. Direct-forcing immersed boundary method for mixed heat

transfer. Commun. Comput. Phys. 2015, 18, 1072–1094. [CrossRef]
7. Horng, T.-L.; Hsieh, P.-W.; Yang, S.-Y.; You, C.-S. A simple direct-forcing immersed boundary projection

method with prediction-correction for fluid-solid interaction problems. Comput. Fluids 2018, 176, 135–152.
[CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.81.345
http://dx.doi.org/10.1063/1.869919
http://dx.doi.org/10.1103/PhysRevLett.93.144501
http://www.ncbi.nlm.nih.gov/pubmed/15524800
http://dx.doi.org/10.1017/S002211200500594X
http://dx.doi.org/10.4208/cicp.151214.250515s
http://dx.doi.org/10.1016/j.compfluid.2018.02.003


Mathematics 2020, 8, 1619 20 of 20

8. Noor, D.Z.; Chern, M.J.; Horng, T.L. An immersed boundary method to solve fluid-solid interaction problems.
Comput. Mech. 2009, 44, 447–453. [CrossRef]

9. Fernandes, A.C.; Gomes, H.C.; Campello, E.M.; Müller, A.S.; Pimenta, P.M. A coupled FEM–DEM method
for the modeling of fluids laden with particles. Comput. Part. Mech. 2020. [CrossRef]

10. Hamid, A.; Arshad, A.B.; Mehdi, S.; Qasim, M.D.; Ullah, A.; Molina, J.J.; Yamamoto, R. A numerical study
of sedimentation of rod like particles using smooth profile method. Int. J. Multiph. Flow 2020, 127, 103263.
[CrossRef]

11. Kwon, J.; Monaghan, J.J. Sedimentation in homogeneous and inhomogeneous fluids using SPH. Int. J.
Multiph. Flow 2015, 72, 155–164. [CrossRef]

12. Riazi, A.; Türker, U. The drag coefficient and settling velocity of natural sediment particles. Comput. Part.
Mech. 2019, 6, 427–437. [CrossRef]

13. Walayat, K.; Talat, N.; Jabeen, S.; Usman, K.; Liu, M. Sedimentation of general shaped particles using a
multigrid fictitious boundary method. Phys. Fluids 2020, 32, 063301. [CrossRef]

14. Walayat, K.; Zhang, Z.; Usman, K.; Chang, J.; Liu, M. Dynamics of elliptic particle sedimentation with
thermal convection. Phys. Fluids 2018, 30, 103301. [CrossRef]

15. Glowinski, R.; Pan, T.W.; Hesla, T.I.; Joseph, D.D.; Périaux, J. A fictitious domain approach to the direct
numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate
flow. J. Comput. Phys. 2001, 169, 363–426. [CrossRef]

16. Cate, A.T.; Nieuwstad, C.H.; Derksen, J.J.; Van den Akker, H.E.A. Particle imaging velocimetry experiments
and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 2002, 14, 4012–4025.
[CrossRef]

17. Aulisa, E.; Bnà, S.; Bornia, G. A monolithic ALE Newton–Krylov solver with Multigrid-Richardson–Schwarz
preconditioning for incompressible fluid-structure interaction. Comput. Fluids 2018, 174, 213–228. [CrossRef]

18. Saksono, P.H.; Dettmer, W.G.; Perić, D. An adaptive remeshing strategy for flows with moving boundaries
and fluid–structure interaction. Int. J. Numer. Methods Eng. 2007, 71, 1009–1050. [CrossRef]

19. Sahin, M.; Mohseni, K. An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow
patterns generated by the hydromedusa Aequorea victoria. J. Comput. Phys. 2009, 228, 4588–4605. [CrossRef]

20. Blasco, J.; Calzada, M.C.; Marín, M. A Fictitious Domain, parallel numerical method for rigid particulate
flows. J. Comput. Phys. 2009, 228, 7569–7613. [CrossRef]

21. Wan, D.; Turek, S. Direct numerical simulation of particulate flow via multigrid FEM techniques and the
fictitious boundary method. Int. J. Numer. Methods Fluids 2006, 51, 531–566. [CrossRef]

22. Fortes, A.F.; Joseph, D.D.; Lundgren, T.S. Nonlinear mechanics of fluidization of beds of spherical particles.
J. Fluid Mech. 1987, 177, 467–483. [CrossRef]

23. Hu, H.H.; Joseph, D.D.; Crochet, M.J. Direct simulation of fluid particle motions. Theor. Comput. Fluid Dyn.
1992, 3, 285–306. [CrossRef]

24. Choi, H.G. Splitting method for the combined formulation of the fluid-particle problem. Comput. Methods
Appl. Mech. Eng. 2000, 190, 1367–1378. [CrossRef]

25. Gazzola, M.; Chatelain, P.; van Rees, W.M.; Koumoutsakos, P. Simulations of single and multiple swimmers
with non-divergence free deforming geometries. J. Comput. Phys. 2011, 230, 7093–7114. [CrossRef]

26. Kolomenskiy, D.; Schneider, K. A Fourier spectral method for the Navier Stokes equations with volume
penalization for moving solid obstacles. J. Comput. Phys. 2009, 228, 5687–5709. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00466-009-0384-5
http://dx.doi.org/10.1007/s40571-020-00336-3
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.103263
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.004
http://dx.doi.org/10.1007/s40571-019-00223-6
http://dx.doi.org/10.1063/5.0004358
http://dx.doi.org/10.1063/1.5051817
http://dx.doi.org/10.1006/jcph.2000.6542
http://dx.doi.org/10.1063/1.1512918
http://dx.doi.org/10.1016/j.compfluid.2018.08.003
http://dx.doi.org/10.1002/nme.1971
http://dx.doi.org/10.1016/j.jcp.2009.03.027
http://dx.doi.org/10.1016/j.jcp.2009.07.010
http://dx.doi.org/10.1002/fld.1129
http://dx.doi.org/10.1017/S0022112087001046
http://dx.doi.org/10.1007/BF00717645
http://dx.doi.org/10.1016/S0045-7825(00)00164-X
http://dx.doi.org/10.1016/j.jcp.2011.04.025
http://dx.doi.org/10.1016/j.jcp.2009.04.026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Model and Numerical Method
	DFIB Method
	Equations of Motion Governing the Movement of an Immersed Solid
	Collision Model
	Numerical Procedure

	Numerical Validations
	Sedimentation of a Circular Disk
	Sedimentation of a 3D Sphere

	More Sedimentation Simulations by DFIB Method
	Sedimentation of Two Tandem Circular Disks
	Sedimentation of Multiple Circular Disks

	Sedimentation of Solid Objects without Rotational Symmetry
	Sedimentation of a Regular Triangle
	A Freely Falling Ellipse

	Summary and Conclusions
	
	References

