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a b s t r a c t 

In this paper, we propose a simple and novel direct-forcing immersed boundary (IB) projection method 

in conjunction with a prediction-correction (PC) process for simulating the dynamics of fluid-solid inter- 

action problems, in which each immersed solid object can be stationary or moving in the fluid with a 

prescribed velocity. The method is mainly based on the introduction of a virtual force which is distributed 

only on the immersed solid bodies and appended to the fluid momentum equations to accommodate the 

internal boundary conditions at the immersed solid boundaries. More specifically, we first predict the 

virtual force on the immersed solid domain by using the difference between the prescribed solid velocity 

and the computed velocity, which is obtained by applying the Choi–Moin projection scheme to the in- 

compressible Navier–Stokes equations on the entire domain including the portion occupied by the solid 

bodies. The predicted virtual force is then added to the fluid momentum equations as an additional forc- 

ing term and we employ the same projection scheme again to correct the velocity field, pressure and 

virtual force. Although this method is a two-stage approach, the computational cost of the correction 

stage is rather cheap, since the associated discrete linear systems need to be solved in the correction 

stage are same with that in the prediction stage, except the right-hand side data terms. Such a PC pro- 

cedure can be iterated to form a more general method, if necessary. The current two-stage direct-forcing 

IB projection method has the advantage over traditional one-stage direct-forcing IB projection methods, 

consisting of the prediction step only, by allowing much larger time step, since traditional methods gen- 

erally request quite small time step for flow field relaxed and adjusted to the solid body movement even 

using implicit scheme. Numerical experiments of several benchmark problems are performed to illustrate 

the simplicity and efficient performance of the newly proposed method. Convergence tests show that the 

accuracy of the velocity field is super-linear in space in all the 1-norm, 2-norm, and maximum norm. We 

also find that our numerical results are in very good agreement with the previous works in the literature 

and one correction at each time step appears to be good enough for the proposed PC procedure. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this paper, we will propose a simple and novel direct-forcing

mmersed boundary (IB) projection method with prediction-

orrection (PC) for simulating the dynamics of incompressible vis-

ous flows interacting with rigid solid bodies, where each im-

ersed solid object can be stationary or moving in the fluid with

 prescribed velocity. As is well known, the study of fluid-structure
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nteraction (FSI) is of great importance in many applications of sci-

nces and engineering, and it usually involves complex structure

eometries. The body-fitted approach is a conventional method

hat is frequently used to simulate flow with a complex boundary.

n that approach, the incompressible Navier–Stokes equations are

patially discretized on a curvilinear or unstructured grid that con-

orms to the immersed structure boundaries. Therefore, the bound-

ry conditions such as the no-slip condition can be imposed eas-

ly. However, the body-fitted discretizations have to re-mesh the

patial domain at every time step correspondingly when the body

eforms or moves in the fluid. Since the grid generation can be-

ome a large computational overhead, it would be desirable to

void the need of re-meshing at each time step. Even the arbi-
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trary Lagrangian–Eulerian method still needs remedying for every

several time steps to avoid the deterioration of grid quality. Thus,

one should seek the help of the Cartesian grid based non-boundary

conforming methods, such as the so-called IB method, to address

the complex FSI problems. 

It is well known that the IB method was originally introduced

by Peskin in the 1970s to model blood flow in the heart and

through heart valves (cf. [49,50] ). In recent years, it has evolved

into a simple but powerful method for formulating the interac-

tion between viscous incompressible fluid and one or more struc-

tures immersed in it; see e.g., [10,24,32–34,36–38,41,42,47,51,53–

55,60–62,67] and many references cited therein. In the traditional

IB method, an Eulerian description is used to describe the fluid dy-

namics, while the Lagrangian representation is used to describe the

surface of immersed object. Each immersed boundary exerts a sin-

gular force on the fluid and at the same time moves with the lo-

cal fluid velocity when the velocity of the immersed object is not

prescribed. The interaction between immersed boundary and fluid

can be represented by a contribution to a force density term in

the fluid momentum equations by means of the Dirac delta func-

tion. This results in a single set of governing equations of motion

to hold in the entire domain without any internal boundary condi-

tions. Instead of generating a boundary-fitted grid for regions ex-

terior and interior to the immersed boundary at each time step,

the spatial discretization of the IB method is implemented over

Cartesian grids for the entire domain, and the immersed bound-

ary is discretized by a set of Lagrangian marker points that are not

constrained to lie on the grids. In the meantime, the Eulerian and

Lagrangian variables are linked by the interaction equations that

involve a smoothed approximation to the Dirac delta function. 

According to the way that the singular force would be gen-

erated, the IB method can be generally categorized as either the

feedback-forcing approach or the direct-forcing approach [45] . In

the feedback-forcing approach, the singular forcing term is deter-

mined by using the differences between the expected displacement

and velocity and the computed ones on the immersed boundary

with two negative penalty parameters. These two negative param-

eters are obtained semi-empirically and usually impose restrictive

stability conditions on the size of time step. Although this ap-

proach has proved to be rather capable of handling FSI problems

of flows past stationary or moving cylinder, it sometimes have

severe stability problems by the inherent feedback nature of the

method. The feedback-forcing IB approach has been studied in re-

cent years by many researchers, such as Goldstein et al. [19] , Hsieh

et al. [24] , Lai and Peskin [36] , Saiki and Biringen [52] , Silva et al.

[41] , just to name a few. On the other hand, to tackle the diffi-

culties arising in the feedback-forcing approach, the direct-forcing

IB approach was introduced by Yu [67] and Fadlun et al. [17] . In

this approach, the external force term is directly deduced from the

momentum equations by setting the velocity at boundary points

of the immersed object to the desired velocity using interpola-

tion/distribution functions. In this manner, the boundary condi-

tions can be approximately satisfied when combined with a pro-

jection scheme in practical computations. Compared with the feed-

back forcing, the direct forcing is rather straight forward, because

there are no unknown parameters that should be determined in

the formulation. The basic idea of the direct-forcing approach has

been used and developed successfully in several further applica-

tions, see e.g., [2,15,22,26,29,40,44,59,61,64,67,68] , etc. 

In the work of Noor et al. [48] , they proposed a new direct-

forcing IB method combined with the projection scheme for simu-

lating the dynamics of fluid-solid interaction problems, in which

a virtual force for the solid body is added to the incompress-

ible Navier–Stokes equations to accommodate the interaction be-

tween the fluid and solid. The most characteristic feature of such

approach is that the virtual force is not just distributed on im-
ersed solid boundary, but is actually distributed on the whole

olid body. In the projection computations, the virtual force is esti-

ated by using the difference between the prescribed solid veloc-

ty and the computed one weighted with a volume-of-solid func-

ion η to avoid the rather complicated interpolation process as that

f [17,30] , where the computed velocity is obtained by applying the

rojection scheme to the incompressible Navier–Stokes equations

n the entire domain including the portion occupied by the solid

ody. In fact, the function η denotes the volume fraction of solid

ithin a cell, where η equals to 1 for solid cells and 0 for fluid

ells, and is fractional on cells cut by immersed boundary. How-

ver, for making the scheme as simple as possible for moving solid

bjects, they ignored the fractional value of η. That is, in [48] , the

alues of η is either 1 or 0 only. In the review process of this pa-

er, one of the reviewers pointed out the earlier work of Kajishima

t al. [27,28] to us. We have found that the numerical method pro-

osed in [27,28] is essentially identical to that of [48] for solving

uid-solid interaction problems. 

Although the direct-forcing IB method proposed in

27,28,48] has been successfully applied to several engineer-

ng applications [5–7] and it seems to produce reasonable results

or simulating fluid-solid interaction problems, we find that this

ethod is not always convergent when it is combined with an

nappropriate projection scheme. The main reason for this failure

s due to the inconsistency between velocity and pressure at the

nd of each time step with velocity corrected but not pressure in

he immersed solid domain. This particularly causes a problem

n calculating the intermediate velocity of the next time step

hen employing pressure from the previous time step in the

omentum equations. We will give a more detailed description

f the possible inconsistency in the method in Section 2 below.

his is an important finding in the present study regarding the

rimitive direct-forcing IB method in [27,28,48] . 

Motivated by the above finding, in this paper, we will provide a

emedy to prevent the possible inconsistency arising in the primi-

ive direct-forcing IB method of [27,28,48] . We will propose a sim-

le and novel PC approach combined with the projection scheme

f Choi and Moin [9] , which is a second-order scheme in time, to

imulate the dynamics of fluid-solid interaction problems, where

ach immersed solid object can be stationary or moving in the

uid with a prescribed velocity. This approach can be categorized

s a direct-forcing IB projection method with a PC process. A time-

iscrete virtual force distributed only on the immersed solid body

s introduced and added to the fluid momentum equations to ac-

ommodate the internal boundary condition at the immersed solid

oundary as done in Noor et al. [48] and Kajishima et al. [27,28] .

ore specifically, in the prediction stage, the virtual force can be

rst predicted by using the difference between the prescribed solid

elocity and the computed one, which is obtained by the Choi–

oin projection scheme on the entire domain without particularly

onsidering the immersed solid object. In the correction stage, the

btained predicted virtual force is then appended to the momen-

um equations as an additional forcing term for calculating the

ntermediate velocity. We then perform the Choi–Moin projection

gain to update the velocity and pressure fields, and correct the

elocity in immersed solid domain to obtain the corrected virtual

orce. Although this direct-forcing IB projection method with PC

s a two-stage approach, the computational cost of the correction

tage is rather cheap, since the associated discrete linear systems

eed to be solved in the correction stage are same with that in the

rediction stage, except the right-hand side data terms. Apparently,

uch a PC procedure can be iterated to form a more general P(C) k 

ethod for k ≥ 2, if necessary. This two-stage method also has the

dvantage over the most direct-forcing IB projection methods like

oor et al. [48] and Kajishima et al. [27,28] , since those direct-

orcing methods are generally one-stage, which request quite small
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Fig. 2.1. A schematic diagram of flow over a moving solid body �s (t) at time t . 
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Fig. 3.1. A schematic diagram of the 2-D computational domain � with staggered 

grid, where the unknowns u, v and p are approximated at the grid points marked 

by → , ↑ and •, respectively. 
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ime step for flow field relaxed and adjusted to the solid body

ovement even using implicit scheme. 

In this paper, we will perform numerical experiments of sev-

ral fluid-solid interaction problems to illustrate the simplicity and

fficient performance of this newly proposed approach, including

he flow induced by a rotating cylinder inside a square enclosure

or convergence test, the flow past a stationary cylinder, the flow

ast an in-line oscillating cylinder, and the flow induced by two

ylinders moving towards each other. All these numerical examples

how the high capability of this newly proposed method in solv-

ng complex-geometry flow problems. In particular, we find from

he convergence test that the order of convergence of the veloc-

ty field is super-linear in space in 1-norm, 2-norm, and maximum

orm, while the pressure is only first-order accurate in 1-norm

nd 2-norm and somewhat nearly half-order accurate in the max-

mum norm. We also find that our numerical results are in very

ood agreement with the previous works in the literature and one

orrection at each time step appears to be good enough for the

roposed PC procedure. Finally, to validate the ability of the pro-

osed method for solving two-way fluid-solid interaction problems

n which the velocity of each immersed solid object is not pre-

cribed, promising numerical results of the free-falling process of a

-D solid ball are presented. 

In summary, the main contributions of this paper are twofold.

irst, we clearly describe how the inconsistency problem might

rise in the primitive direct-forcing IB method [27,28,48] . The

econd contribution is that we devise a two-stage direct-forcing

ethod successfully preventing the possible inconsistency and effi-

iently simulating the dynamics of fluid-solid interaction problems.

The remainder of this paper is organized as follows. In

ection 2 , we demonstrate how the possible inconsistency arises

n the primitive direct-forcing IB projection method when the pro-

ection scheme adopted in the method is not carefully chosen. In

ection 3 , we introduce the new and simple direct-forcing IB pro-

ection method with a PC process. Numerical experiments for sev-

ral benchmark problems are presented in Section 4 . Finally, a brief

ummary and conclusions are given in Section 5 . 

. A primitive direct-forcing IB projection method and the 

nconsistency 

Let � ⊂ R 

d , d = 2 or 3, be a bounded fluid domain which en-

loses, for simplicity, a single rigid solid body positioned at �s (t)

ith the prescribed velocity u s , see Fig. 2.1 . One of the Carte-

ian grid based non-boundary conforming methods for efficiently

imulating fluid-solid interaction problems is the direct-forcing IB

ethod of Noor et al. [48] and Kajishima et al. [27,28] , in which

he solid part is treated like a fluid but with an additional virtual

orce field F applied only to the solid portion so that it would be-

ave like a real solid body. In practice, this virtual force F is added

o the momentum equations to accommodate the interaction be-

ween the solid and fluid such that the internal boundary condi-

ion at the immersed solid boundary is exactly satisfied. Thus the
roblem can be solved on the entire domain � with a Cartesian

rid. Of course, how to find the virtual force F is the most crucial

ssue. Later we will specify such virtual force in its time-discrete

ersion in the projection computations. At this moment, the gov-

rning equations of the dynamics of the fluid-solid interaction can

e informally posed as follows: 

∂ u 

∂t 
− ν∇ 

2 u + ( u · ∇) u + ∇p = f + F t ∈ (0 , T ] , x ∈ �, (2.1) 

 · u = 0 t ∈ (0 , T ] , x ∈ �, (2.2) 

 = u b t ∈ (0 , T ] , x ∈ ∂�, (2.3) 

 = u 0 t = 0 , x ∈ �, (2.4) 

here u is the velocity field, p is the pressure (divided by a con-

tant density ρ), ν is the kinematic viscosity, and f represents the

ensity of body force. 

To introduce the direct-forcing IB projection approach of Noor

t al. [48] and Kajishima et al. [27,28] , we first discretize the

emporal variable t of the incompressible Navier–Stokes problem

2.1) –(2.4) , with the spatial variable x being left continuous. Let

 i := i �t with �t > 0 be the time step length. Let g n and g n + 
1 
2 de-

ote the approximate value or exact value (if available) of g (t n )

nd g (t 
n + 1 

2 
) , respectively. The temporal integration of (2.1) –(2.4) is

ased on a semi-implicit second-order difference method, in which

he Crank–Nicolson implicit scheme will be employed for time dis-

retization, the Adams–Bashforth explicit approximation will be

sed for linearizing the nonlinear convection term, and a direct

econd-order approximation will be applied to both the pressure

nd the virtual force. More specifically, we use the following tem-

oral approximations: 

1 

2 

(
( u 

n +1 · ∇) u 

n +1 +( u 

n · ∇) u 

n 
)

= 

3 

2 

( u 

n · ∇) u 

n − 1 

2 

( u 

n −1 · ∇) u 

n −1 

+ O (�t 2 ) , (2.5) 

1 

2 

(∇ p n +1 + ∇ p n 
)

= ∇ p n + 
1 
2 + O ( �t 2 ) and 

1 

2 

(
F n +1 + F n 

)
= F n + 

1 
2 + O ( �t 2 ) . (2.6) 

ith these second-order approximations, the resulting system of

quations can be posed as follows: 

u 

n +1 − u 

n 

− ν ∇ 

2 ( u 

n +1 + u 

n ) + 

3 

( u 

n · ∇) u 

n 
�t 2 2 
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Table 4.1 

Error behavior of the numerical solutions u h , v h and p h of the rotating solid disk problem 

at time T = 4 using the numerical solution of h = 1 / 1620 as the reference solution. 

1/ h 1-norm Order 2-norm Order Max-norm Order 

u h 20 2.0820e–02 – 3.9742e–02 – 1.7573e–01 –

60 8.4854e–03 0.82 1.7044e–02 0.77 8.2900e–02 0.68 

180 2.5123e–03 1.11 5.0608e–03 1.11 2.8370e–02 0.98 

540 6.5240e–04 1.23 1.3207e–03 1.22 8.1061e–03 1.14 

v h 20 2.5334e–02 – 4.2845e–02 – 1.7573e–01 –

60 1.0199e–02 0.83 1.8496e–02 0.76 8.2900e–02 0.68 

180 3.0741e–03 1.09 5.5503e–03 1.10 2.8554e–02 0.97 

540 7.9659e–04 1.23 1.4500e–03 1.22 8.1061e–03 1.15 

p h 20 6.8326e–03 – 1.3968e–02 – 8.4475e–02 –

60 3.0749e–03 0.73 6.2523e–03 0.73 4.8072e–02 0.51 

180 9.8066e–04 1.04 2.1771e–03 0.96 3.8831e–02 0.19 

540 2.6861e–04 1.18 7.5445e–04 0.96 2.5701e–02 0.38 

Table 4.2 

The comparison of experimental and numerical results of steady state wake dimensions and maximum drag coeffi- 

cient of the flow around a stationary cylinder for Re = 20 , 40 . 

Reynolds number 20 40 

Methods C d L w / D a / D b / D θ C d L w / D a / D b / D θ

Calhoun [4] 2.19 0.91 – – 45.5 1.62 2.18 – – 54.2 

Coutanceau and Bouard ∗ [14] – 0.93 0.33 0.46 45.0 – 2.13 0.76 0.59 53.8 

Linnick and Fasel [42] 2.06 0.93 0.36 0.43 43.5 1.54 2.28 0.72 0.60 53.6 

Su et al. [54] 2.20 – – – – 1.63 – – – –

Taira and Colonius (B) [55] 2.06 0.94 0.37 0.43 43.3 1.54 2.30 0.73 0.60 53.7 

Tritton ∗ [57] 2.22 – – – – 1.48 – – – –

Ye et al. [66] 2.03 0.92 – – – 1.52 2.27 – – –

Present method-P 2.12 0.92 0.36 0.42 44.6 1.59 2.20 0.71 0.60 51.2 

Present method-PC 2.10 0.93 0.35 0.43 43.5 1.56 2.18 0.72 0.60 53.3 

Present method-PCC 2.09 0.93 0.35 0.44 44.1 1.54 2.18 0.71 0.60 53.0 

Fig. 4.1. Boundary conditions of the problem of flow induced by a rotating solid 

disk. 
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−1 

2 

( u 

n −1 · ∇) u 

n −1 + ∇p n + 
1 
2 = [ f ] n + 

1 
2 + F n + 

1 
2 in �, (2.7)

∇ · u 

n +1 = 0 in �, (2.8)

u 

n +1 = u 

n +1 
b 

on ∂�, (2.9)

where [ f ] n + 
1 
2 denotes the average value of the density of body

force 1 
2 ( f 

n +1 + f n ) . Obviously, it is not an efficient way to solve

this linearized coupled system of Stokes-like equations directly.

This is precisely the reason for proposing the projection approach

to decouple the computations of u 

n +1 and p n + 
1 
2 . 

We now introduce the primitive direct-forcing IB projection

method which was proposed by Noor et al. [48] and Kajishima
t al. [27,28] for solving system (2.7) –(2.9) . In this section, we

ill replace the first-order in time Chorin projection scheme

11,12] originally adopted in [27,28,48] by the second-order in time

rojection scheme of Brown et al. [3] . This will enable us to under-

tand how the inconsistency may possibly arise and cause conver-

ence problem in the direct-forcing IB projection approach if not

electing projection scheme appropriately. At the beginning of time

evel t = t n +1 , the velocities u 

n , u 

n −1 , the pressure p n −
1 
2 and the

ensity of body force [ f ] n + 
1 
2 are all given. The numerical scheme

onsists of the following several steps: 

Step 1: First, we solve u 

∗ without virtual force term for the mo-

mentum equations: 

u 

∗ − u 

n 

�t 
− ν

2 

∇ 

2 ( u 

∗+ u 

n ) + [( u · ∇) u ] n + 
1 
2 + ∇p n −

1 
2 = 

[ f ] n + 
1 
2 in �, (2.10)

u 

∗ = u 

n +1 
b 

on ∂�, (2.11)

where [( u · ∇) u ] n + 
1 
2 denotes the Adams–Bashforth second-

order approximation given in (2.5) , i.e., 

[( u · ∇) u ] n + 
1 
2 := 

3 

2 

( u 

n · ∇) u 

n − 1 

2 

( u 

n −1 · ∇) u 

n −1 . (2.12)

We remark that in general, the intermediate velocity field u 

∗

does not satisfy the divergence-free condition in �. 

Step 2: In this step, we will advance the intermediate velocity

u 

∗ by using the pressure correction function ϕ 

n +1 . The role

that ϕ 

n +1 plays is an auxiliary function whose main purpose

is to project u 

∗. Indeed, we determine u 

∗∗ and ϕ 

n +1 by solv-

ing 

u 

∗∗ − u 

∗
+ ∇ϕ 

n +1 = 0 in �, (2.13)

�t 
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Fig. 4.2. Numerical results of the velocity field and pressure contours of the rotating solid disk problem at time t = 4 produced by the present method with h = 1 / 180 . 

Fig. 4.3. Boundary conditions of the problem of flow past a cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 �, 

.23) 

 

 

 

 

b  

B  

p  

s  

p  

t  
∇ · u 

∗∗ = 0 in �, (2.14) 

u 

∗∗ · n = u 

n +1 
b 

· n on ∂�. (2.15) 

The existence and uniqueness (up to a constant for ϕ 

n +1 )

of solution of the above boundary value problem (2.13) –

(2.15) is ensured by the Helmholtz–Hodge decomposition

[13] . In fact, taking the divergence to (2.13) , dotting both

sides of (2.13) with the outward unit normal vector n to the

boundary ∂�, and combining with the boundary conditions

(2.11) and (2.15) , we can find that solving system (2.13) –

(2.15) is equivalent to solve the following ϕ 

n +1 -Neumann

Poisson problem: 

∇ 

2 ϕ 

n +1 = 

1 

�t 
∇ · u 

∗ in �, (2.16) 

∇ϕ 

n +1 · n = 0 on ∂�, (2.17) 

and then define the velocity field u 

∗∗ as 

u 

∗∗ = u 

∗ − �t∇ϕ 

n +1 in �. (2.18) 

In practical computations, we usually impose the condi-

tion 

∫ 
� ϕ 

n +1 d x = 0 to the Neumann Poisson problem (2.16) –

(2.17) for the uniqueness of solution. 

Step 3: Conventionally, (2.18) would be the end of projection

scheme for finding the velocity field and we have to set

u 

n +1 = u 

∗∗; see, e.g., [1,11,12,20,21,31,56,58,69] . However, in

order to make the velocity of solid domain to cope with

prescribed solid body velocity, we need an additional step

to reset the velocity of solid domain to be the same as

that of the solidâs velocity u 

n +1 
s . This would naturally make
the fluid satisfy the internal boundary condition at the im-

mersed solid boundary ∂�n +1 
s . This can be accomplished by

defining the virtual force on the solid body as 

F n + 
1 
2 := η

u 

n +1 
s − u 

∗∗

�t 
on �, (2.19) 

and then solve the velocity u 

n +1 by directly setting 

u 

n +1 − u 

∗∗

�t 
= F n + 

1 
2 in �, (2.20) 

where η(t n +1 , x ) is defined as 

η(t n +1 , x ) = 

{ 

1 x ∈ �
n +1 

s , 

0 x 	∈ �
n +1 

s . 
(2.21) 

Note that the virtual force F n + 
1 
2 exists on the whole solid

body and zero elsewhere. In other words, in this step, we

simply set 

u 

n +1 = 

{ 

u 

∗∗ in � \ �n +1 

s , 

u 

n +1 
s in �

n +1 

s . 
(2.22) 

We remark that in the spatial discretization that will be

specified in Section 4 , the function η denotes the volume

fraction of solid inside a cell and it is generally between 0

(pure fluid) and 1 (pure solid) and can be fractional for cells

cut by immersed solid boundary. 

Step 4: Finally, summing the equations (2.10) , (2.13) , (2.20) with

(2.18) , we obtain 

u 

n +1 − u 

n 

�t 
− ν

2 

∇ 

2 ( u 

∗∗ + u 

n ) + [( u · ∇) u ] n + 
1 
2 

+ ∇ 

(
p n −

1 
2 + ϕ 

n +1 − ν�t 

2 

∇ 

2 ϕ 

n +1 

)
= [ f ] n + 

1 
2 + F n + 

1 
2 in

(2

which comparing with (2.7) suggests that in this last step

of the projection scheme, we should update the pressure by

setting 

p n + 
1 
2 := p n −

1 
2 + ϕ 

n +1 − ν�t 

2 

∇ 

2 ϕ 

n +1 in �. (2.24)

The above direct-forcing IB projection method is simply formed

y combining the second-order in time projection scheme of

rown et al. [3] with the underlying idea of the direct-forcing ap-

roach proposed by Noor et al. [48] and Kajishima et al. [27,28] . It

eems to be a reasonable scheme for solving fluid-solid interaction

roblems. However, based on our numerical experiments, we find

hat in general it does not converge for the 2-D problem of flow
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Fig. 4.4. The characteristic dimensions of wake structure. 

Re = 20

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Re = 40

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Re = 20

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Re = 40

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Re = 20

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Re = 40

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Fig. 4.5. The instantaneous streamlines near the cylinder at time T = 50 for Re = 20 and Re = 40 (top to bottom: present method-P, present method-PC, and present method- 

PCC). 
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past a stationary cylinder, unless the time step is very small. The

reason for this failure is because that in the projection computa-

tions, the obtained velocity field u 

n +1 and pressure p n + 
1 
2 at current

time level t = t n +1 , which will be used in solving the intermediate

velocity field u 

∗ in the next time level t = t n +2 , may not be consis-

tent. More precisely, we can find that the velocity u 

n +1 is directly

obtained by setting (2.22) that is identical to u 

∗∗ in the fluid part,

but is enforced to be u 

n +1 
s in the solid part. At the same time, how-

ever, the pressure p n + 
1 
2 is obtained by (2.24) which is essentially

determined along with the velocity field u 

∗∗ in Step 2. In other

words, p n + 
1 
2 is consistent with u 

∗∗ but not u 

n +1 . Therefore, the in-
onsistency may arise in the next time level t = t n +2 when we per-

orm Step 1 for the intermediate velocity u 

∗ by solving (2.10) and

2.11) , where, at this moment, u 

n should be replaced by u 

n +1 and

p n −
1 
2 replaced by p n + 

1 
2 . We can therefore conclude that a careful

hoice of projection scheme plays a crucial role for the success of

uch direct-forcing IB projection approach. This critical observation

s one of the main contributions of this work and it motivates us

o seek the necessary improvements. 

We remark that the choice of first-order in time Chorin projec-

ion scheme in Noor et al. [48] and Kajishima et al. [27,28] luckily

void the inconsistency, since there would be no pressure term in
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Fig. 4.6. The instantaneous vorticity contours near the cylinder at time T = 50 for Re = 20 and Re = 40 (top to bottom: present method-P, present method-PC, and present 

method-PCC). 
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olving the intermediate velocity u 

∗. Still, there are other projec-

ion schemes can avoid this inconsistency and at the same time

wn higher-order accuracy in time such as the Choi–Moin second-

rder projection scheme [9] . In the next section, we will provide

 far better remedy to retrieve the time accuracy of the direct-

orcing IB projection method. We will propose a simple and novel

C approach, combined with the second-order in time projection

cheme of Choi and Moin [9] , to simulate the dynamics of fluid-

olid interaction problems. This is another main contribution of

his work. The results of the numerical experiments reported in

ection 4 will demonstrate the efficiency and robustness of the

roposed prediction-correction strategy. 

There are several similar direct-forcing IB methods

ave been proposed and studied in the literature, see e.g.,

2,15,17,22,26,29,40,44,59,61,64,67,68] . Generally speaking, in those

ethods the forcing term F appended to the momentum equa-

ions due to the presence of solid body has to be determined

t the advanced time level before the solution procedure can be

tarted. Moreover, this momentum forcing is located only in a

eighborhood of the immersed solid boundary. As a result, the

mmersed boundary condition on ∂�s can only be approximately

atisfied, while the velocity field is divergence free on the whole

patial domain �. In contrast, the virtual force in the direct-forcing

ethod of Noor et al. [48] and Kajishima et al. [27,28] is defined
n the whole solid body domain as that specified in (2.19) . Such

irtual force does not need to be estimated at the beginning of the

olution procedure, it is explicitly determined after the velocity

eld u 

∗∗ is obtained. That is, the step of determination of virtual

orce (Step 3) is implemented after the projection step (Step

). This leads the immersed boundary condition to be exactly

atisfied. However, the divergence-free condition may be destroyed

n cut cells at which the solid-fluid interface is located. More of

his divergence-free issue will be discussed in Section 4.2 . These

re the main differences between the direct-forcing IB method of

oor et al. [48] and Kajishima et al. [27,28] with other previous

irect-forcing IB methods in the literature. 

. A direct-forcing IB projection method with a 

rediction-correction process 

In this section, we will propose a simple and novel direct-

orcing IB projection method with a PC process, where the second-

rder in time Choi–Moin projection scheme [9] will be employed

or the time discretization. The main idea of this approach is based

n using a PC strategy to enhance the consistency of the primi-

ive method. The proposed method is divided into following two

tages: 
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Fig. 4.7. The time evolution of drag and lift coefficients for Re = 100 (top to bottom: 

present method-P, present method-PC, and present method-PCC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 

The comparison of maximum drag and lift coeffi- 

cients and Strouhal number of the flow around a 

stationary cylinder for Re = 100 . 

Reynolds number 100 

Methods C d C 
 St 

Calhoun [4] 1.36 0.30 0.175 

Chiu et at. [8] 1.36 0.30 0.167 

Lai and Peskin [36] 1.45 0.33 0.165 

Liu et al. [43] 1.36 0.34 0.164 

Russell and Wang [51] 1.39 0.32 0.170 

Su et al. [54] 1.40 0.34 0.168 

Present method-P 1.43 0.37 0.171 

Present method-PC 1.40 0.36 0.170 

Present method-PCC 1.38 0.35 0.168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Prediction stage: In this stage, we predict the virtual force

F n + 
1 
2 

,p by using the primitive direct-forcing IB projection ap-

proach as that described in Section 2 . All unknown variables

are equipped with the superscript “p ” to indicate that they are

unknown functions to be solved in this stage. Firstly, we solve

u 

∗,p without virtual force term for the momentum equations: ˜ u 

p − u 

n 

�t 
− ν

2 

∇ 

2 ( ̃  u 

p + u 

n ) + [( u · ∇) u ] n + 
1 
2 + ∇p n −

1 
2 = 

[ f ] n + 
1 
2 in �, (3.1)

˜ u 

p = u 

n +1 
b 

on ∂�, (3.2)

u 

∗,p −˜ u 

p 

�t 
− ∇p n −

1 
2 = 0 in �, (3.3)

where ̃  u 

p is another tentative velocity field which is introduced

for avoiding any special treatment of the boundary condition of

intermediate velocity u 

∗,p and for keeping the overall accuracy

of the projection scheme to be second-order accurate in time;

we refer the reader to [9,31] for more details. Notice that in

general, the intermediate velocity field u 

∗,p does not satisfy the

divergence-free condition in �. Secondly, we advance the inter-

mediate velocity u 

∗,p by using the pressure correction function

ϕ 

n +1 ,p . We determine u 

∗∗,p and ϕ 

n +1 ,p by solving 

u 

∗∗,p − u 

∗,p 

�t 
+ ∇ϕ 

n +1 ,p = 0 in �, (3.4)

∇ · u 

∗∗,p = 0 in �, (3.5)
u 

∗∗,p · n = u 

n +1 
b 

· n on ∂�, (3.6)

which is equivalent to solve the ϕ 

n +1 ,p -Neumann Poisson prob-

lem, 

∇ 

2 ϕ 

n +1 ,p = 

1 

�t 
∇ · u 

∗,p in �, (3.7)

∇ϕ 

n +1 ,p · n = 0 on ∂�, (3.8)

and then define the velocity field u 

∗∗,p as 

u 

∗∗,p = u 

∗,p − �t∇ϕ 

n +1 ,p in �. (3.9)

The additional condition 

∫ 
� ϕ 

n +1 ,p d x = 0 is imposed to the

Neumann Poisson problem (3.7) –(3.8) for the uniqueness of so-

lution. Finally, we predict the virtual force F n + 
1 
2 

,p by setting 

F n + 
1 
2 ,p := η

u 

n +1 
s − u 

∗∗,p 

�t 
on �, (3.10)

where η(t n +1 , x ) = 1 for x ∈ �
n +1 

s and η(t n +1 , x ) = 0 for x 	∈
�

n +1 

s . 

• Correction stage: Once the predicted virtual force F n + 
1 
2 

,p is ob-

tained, in this stage, we then add it to the right-hand side of

(3.1) as an additional forcing term and find the new interme-

diate velocity field u 

∗. With this predicted virtual force F n + 
1 
2 

,p ,

the immersed solid object can be immediately felt by the fluid

occupying the same domain and make it act more like a solid

object. More precisely, we solve for u 

∗ by ˜ u − u 

n 

�t 
− ν

2 

∇ 

2 ( ̃  u + u 

n ) + [( u · ∇) u ] n + 
1 
2 + ∇p n −

1 
2 = 

[ f ] n + 
1 
2 + F n + 

1 
2 ,p in �, (3.11)

˜ u = u 

n +1 
b 

on ∂�, (3.12)

u 

∗ −˜ u 

�t 
− ∇p n −

1 
2 = 0 in �. (3.13)

Then solve for the pressure correction function ϕ 

n +1 by 

∇ 

2 ϕ 

n +1 = 

1 

�t 
∇ · u 

∗ in �, (3.14)

∇ϕ 

n +1 · n = 0 on ∂�, (3.15)

and update the velocity field u 

∗∗ by 

u 

∗∗ = u 

∗ − �t∇ϕ 

n +1 in � (3.16)
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Fig. 4.8. The instantaneous vorticity contours for Re = 100 at different times. 

Table 4.4 

The computational domain �, diameter D and center of the circular cylinder of some methods 

quoted in Table 4.2 and 4.3 . 

Methods Computational domain � Diameter D Center 

Calhoun [4] [0, 32 D ] × [0, 16 D ] 1.0 (8, 8) 

Linnick and Fasel [42] [0 , 46 . 5795 D ] × [ −21 . 3278 D, 21 . 3278 D ] 1.0 (10, 0) 

Su et al. [54] [ −13 . 4 D, 16 . 5 D ] × [ −8 . 35 D, 8 . 35 D ] 0.2 (0, 0) 

Taira and Colonius (B) [55] [ −30 D, 30 D ] × [ −30 D, 30 D ] 1.0 (0, 0) 

Ye et al. [66] [ −10 D, 20 D ] × [ −10 D, 20 D ] 1.0 (5, 7.5) 

Chiu et at. [8] [0 , 40 D ] × [ −10 D, 10 D ] 1.0 (9.5, 0) 

Lai and Peskin [36] [0, 26.6667 D ] × [0, 26.6667 D ] 0.3 (1.85, 4) 

Russell and Wang [51] [ −8 D, 24 D ] × [ −8 D, 8 D ] 1.0 (0, 0) 

Present method [ −13 . 4 D, 16 . 5 D ] × [ −8 . 35 D, 8 . 35 D ] 0.2 (0, 0) 
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and correct the pressure p n + 
1 
2 by 

p n + 
1 
2 = ϕ 

n +1 − ν

2 

∇ ·˜ u . (3.17)

We then define the corrected velocity field u 

n +1 as 

u 

n +1 := 

{ 

u 

∗∗ in � \ �n +1 

s , 

u 

n +1 
s in �

n +1 

s . 
(3.18) 

The correction term of virtual force is given by 

δF n + 
1 
2 := η

u 

n +1 
s − u 

∗∗

�t 
in �, (3.19) 

and then the corrected virtual force becomes 

F n + 
1 
2 = F n + 

1 
2 ,p + δF n + 

1 
2 . (3.20) 

Regarding this direct-forcing IB projection method with PC, we

ave following several remarks: 

emark 3.1. As we have mentioned at the end of Section 2 , a care-

ul choice of the projection schemes plays a crucial role for the

uccess of the primitive direct-forcing IB projection approach. In

his newly proposed method, we employ the second-order in time

hoi–Moin projection scheme [9] and one can find from (3.1) –(3.3)

nd (3.11) –(3.13) that the pressure prediction term ∇p n −
1 
2 essen-

ially does not appear in the first step of the computations for solv-

ng u 

∗,p and u 

∗. For example, summing equations (3.1) and (3.3) ,
e get 

u 

∗,p − u 

n 

�t 
− ν

2 

∇ 

2 ( ̃  u 

p + u 

n ) + [( u · ∇) u ] n + 
1 
2 = [ f ] n + 

1 
2 in �. 

he pressure prediction term disappears therein and this somehow

lleviates the inconsistency of the method. 

emark 3.2. Although this approach is a two-stage method, the

omputational cost of the correction stage is rather cheap, since

he associated discrete linear systems need to be solved in the

orrection stage are same with that in the prediction stage, ex-

ept the right-hand side data terms. To elaborate, at each time

evel, the newly proposed PC approach described above has to

olve two Helmholtz equations of ˜ u 

p and 

˜ u for obtaining the in-

ermediate velocities u 

∗,p and u 

∗, respectively, and two Neumann

oisson equations for the pressure correction functions ϕ 

n +1 ,p and

 

n +1 . However, for all time levels, the only difference for these

elmholtz problems is the right-hand side source terms. In other

ords, the matrices of the resulting linear systems are the same

or all Helmholtz equations, and we do not need to reassemble the

atrix at each time step. Therefore, it can efficiently solve the lin-

ar systems by using, for example, the bi-conjugate gradient sta-

ilized (Bi-CGSTAB) iterative method with an ILU preconditioner

63] . A similar situation occurs in the Neumann Poisson equations

or solving the pressure correction functions ϕ 

n +1 ,p and ϕ 

n +1 . 
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Fig. 4.9. The instantaneous pressure contours for Re = 100 at different times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5 

The comparison of maximum lift and drag coefficients of the flow past an in- 

line oscillating cylinder for Re = 100 . 

f c / f s = 0 C d C 
 f c / f s = 2 C d C 
 

Hurlbut et al. [25] 1.41 0.31 Hurlbut et al. [25] 1.68 0.95 

Su et al. [54] 1.40 0.34 Su et al. [54] 1.70 0.97 

Noor et al. [48] 1.41 0.33 Noor et al. [48] 1.67 0.98 

Present method-PC 1.40 0.36 Present method-PC 1.67 0.98 
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Remark 3.3. At each time level, such prediction-correction proce-

dure can be iterated to form a more general method, if necessary.

The stopping criterion can be taken as, for example, the L 2 norm of

the difference of two successive velocity fields is less than a given

tolerance. However, based on our numerical experiments, we find

that at each time level, one correction appears to be good enough

for the proposed PC procedure. 

Finally, we conclude this section with a brief description

of the spatial discretizations of the Helmholtz and Neumann

Poisson problems mentioned above. For all problems, we ap-

ply the second-order centered difference scheme over a stag-

gered grid to discretize the equations to reach a linear alge-

braic system. For simplicity, we assume that the computational

domain is a 2-D rectangular region � = [ a, b] × [ c, d] and that

the fluid variables are defined on the staggered marker-and-

cell grids [16,23] . As shown in Fig. 3.1 , we define the pressure

on the grid points (x i , y j ) = (a + (i − 1 / 2)�x, c + ( j − 1 / 2)�y ) for

1 ≤ i ≤ m x and 1 ≤ j ≤ m y , while the velocity components u and v are

defined at (x i −1 / 2 , y j ) = (a + (i − 1)�x, c + ( j − 1 / 2)�y ) for 1 ≤ i ≤
m x + 1 and 1 ≤ j ≤ m y and (x i , y j−1 / 2 ) = (a + (i − 1 / 2)�x, c + ( j −
1)�y ) for 1 ≤ i ≤ m x and 1 ≤ j ≤ m y + 1 , respectively. Here, we use

a uniform mesh with mesh size h = �x = �y . 

4. Numerical experiments 

In this section, we will apply the newly proposed direct-

forcing IB projection method with the PC process described in

Section 3 to several 2-D fluid-solid interaction problems to illus-

trate the simplicity and efficient performance of the method for

solving complex-geometry flow problems. We will test the accu-

racy of the proposed method in Section 4.1 by considering the

flow induced by a rotating solid disk inside a square enclosure. In

Section 4.2 , we examine the flow past a stationary cylinder which

is a typical benchmark problem. We then consider the moving

solid objects in the fluid with a prescribed velocity in the next two
ubsections, including the flow past an in-line oscillating cylinder

nd the problem of two cylinders moving towards each other. The

ensity of body force f in all the above examples is zero. In the

umerical simulations, we take the volume-of-solid function η = 0

or cells of pure fluid, η = 1 for cells of pure solid and fractional

or cells cut by immersed solid boundary. We find that our numer-

cal results are in very good agreement with previous works in the

iterature and one correction at each time level appears to be good

nough for the proposed PC procedure. Finally, in Section 4.5 , we

onsider the free-falling process of a 2-D solid ball to validate the

bility of the current method for solving two-way coupling prob-

ems. 

.1. Accuracy test for the flow induced by a rotating solid disk 

In order to test the spatial convergence behavior of the direct-

orcing IB projection method with the PC process, we consider the

roblem of flow induced by a rotating solid disk immersed in a

quare enclosure � = (0 , 1) × (0 , 1) , where the solid disk is cen-

ered at (0.5, 0.5) with radius r = 0 . 25 and rotates counterclock-

ise by a constant angular velocity ω = 4 , that is, u s (t, x, y ) =
(−4(y − 0 . 5) , 4(x − 0 . 5)) for (x, y ) ∈ �s . The zero velocity bound-

ry condition, u = (u, v ) = (0 , 0) , is imposed everywhere at the

oundary ∂�, while the pressure is imposed with the homoge-

eous Neumann boundary condition, as shown in Fig. 4.1 . We con-

ider the Reynolds number Re := 1 /ν = 100 and take a small CFL
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Fig. 4.10. The instantaneous force distribution for Re = 100 at different times. 

Fig. 4.11. The instantaneous sink-source distribution for Re = 100 at different times. 
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i  
umber, CF L = 0 . 1 , for mainly focusing on the spatial accuracy test.

he initial velocity field at t = 0 is set to zero, and will advance

o the time T = 4 , which is sure to reach the steady state. At each

ime level, only one correction in the PC process will be performed.

Since the exact solution is not available in this example, to

ompute the error at T = 4 , we employ the numerical solution
roduced by the present method with the finest grid size h =
 / 1620 as the reference solution. Numerical results for different

rid resolutions are reported in Table 4.1 , in which we consider

he grid sizes h = 1 / 20 , 1 / 60 , 1 / 180 and 1/540. As we consider the

rid size refinement by a factor of 1/3, the staggered grid points

n a coarse grid will still retain in the successive refined grid. Con-
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Fig. 4.12. The instantaneous vorticity contours near the oscillating cylinder for Re = 100 at different times: (left column) t � 40 . 69 + T / 4 , 2 T / 4 , 3 T / 4 , T ; (right column) 

t � 40 . 69 + 5 T / 4 , 6 T / 4 , 7 T / 4 , 2 T , where T ≈ 0 . 595 is the oscillation period of the cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13. A schematic diagram of the computational domain and boundary condi- 

tions for flow around two cylinders moving towards each other. 
sequently, we can estimate the order of convergence of the nu-

merical solutions without any further interpolation processing. In

Fig. 4.2 , we plot the numerical results of the velocity field and

pressure contours at time t = 4 produced by the present method

with h = 1 / 180 . 

From the numerical results presented in Table 4.1 , we may ob-

serve that the order of convergence of the velocity field is appar-

ently better than first order in space in all the 1-norm, 2-norm and

maximum norm, while the accuracy of the pressure is of first order

accurate in 1-norm and 2-norm and is somewhat nearly half order

accurate in the maximum norm. The super-linear convergence, not

second-order convergence, in velocity is expected, since we han-

dle the internal velocity boundary condition of the immersed solid

body by means of the virtual force F acting on the whole solid do-

main with the volume-of-solid function η instead of interpolation

as in Fadlun et al. [17] . This sacrifice of accuracy in the current vol-
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Fig. 4.14. The time evolution of drag and lift coefficients, C d and C 
 , for the upper cylinder in flow around two cylinders compared with the results of Xu and Wang [65] . 
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Fig. 4.15. The flow around two cylinders moving towards each other for Re = 40 at different times: (left) contours of vorticity; (right) contours of pressure. 
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Fig. 4.16. The position of the freely falling solid ball and the flow field visualization 

at time t = 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 . 
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ume of solid approach can avoid the additional interpolation pro-

cedure at immersed boundary at each time step, and gain the ad-

vantage of computing the net force exerted on solid object by fluid

easily just by summing up all discrete virtual forces, see e.g., (4.2)

below. On the other hand, the lower order of accuracy for pres-

sure than velocity is also expected, since it is inherent in projec-

tion scheme. We believe that a more accurate difference scheme

in solving the Neumann Poisson problems (3.7) - (3.8) and (3.14) -

(3.15) with a careful approximation to the right-hand side data will

lead to a better convergence order of the proposed direct-forcing

IB projection method with PC. All these issues will be addressed in

the future work. 

4.2. The flow past a stationary cylinder 

The flow past a stationary cylinder, u s ≡ 0 , is a typical bench-

mark problem which has been extensively studied both experi-

mentally [14,57] as well as numerically [4,42,54,55,66] . It is well

known that the flow configuration depends on the Reynolds num-

ber. For low Reynolds number, about Re ≤ 47, two symmetrical vor-

tices will be stationarily attached behind the cylinder. By increas-

ing the value of Re , the symmetrical vortices will become unsta-

ble and break apart, leading to an alternating vortex shedding. In

the present study, the settings of simulation parameters are quoted

from [54] . We simulate an unsteady flow past a circular cylinder

of diameter D = 0 . 2 centered at (0, 0) in the rectangular com-

putational domain � = [ −13 . 4 D, 16 . 5 D ] × [ −8 . 35 D, 8 . 35 D ] . A con-

stant velocity profile U ∞ 

= 1 is specified at inflow boundary, that

is, x = −13 . 4 D . The detailed boundary conditions are described in

Fig. 4.3 . A non-uniform grid of 250 × 160 cells is adopted to dis-

cretize the overall computational domain, within which a uniform

grid of 60 × 60 cells is employed in the subregion [ −D, D ] × [ −D, D ]

and the CFL number is taken as 0.4. Note that the CFL number

taken here is rarely large compared with primitive direct-forcing IB

methods like Noor et al. [48] , in which CFL number is usually much

smaller since it requires small time step for fluid flow relaxed and

adjusted to the immersed solid object. However, through the pre-

dicted virtual force F n + 
1 
2 

,p in the correction stage (3.11) , fluid flow

is adjusted to the solid object, and therefore it can allow a larger

time step. 

We introduce three different quantities that are often measured

for the sake of comparison with other numerical methods. They

are the drag and lift coefficients, and the Strouhal number (cf.

[36] ). The drag coefficient C and the lift coefficient C 
 are respec-
d 
ively defined as 

 d := 

F d 
U 

2 ∞ 

D/ 2 

and C 
 := 

F 
 

U 

2 ∞ 

D/ 2 

, (4.1)

here the drag force F d and the lift force F 
 are respectively ap-

roximated by 

 d := −
∫ 
�

F 1 d x ≈ −
∑ 

x i j 

F 1 h 

2 and F 
 := −
∫ 
�

F 2 d x ≈ −
∑ 

x i j 

F 2 h 

2 ,

(4.2)

nd F = (F 1 , F 2 ) is the virtual force. All of these quantities are time-

arying. When the flow becomes unstable, the stationary vortices

ehind the cylinder will start moving downstream and shedding

lternatively with a frequency f s . This dimensionless vortex shed-

ing frequency is called the Strouhal number and it is defined as

t := f s /( U ∞ 

D ). 

We now consider the simulations at various Reynolds numbers,

e := U ∞ 

D/ν = 20 , 40 , 100 , to validate the present direct-forcing IB

rojection method with the PC process. For the cases of Re = 20

nd Re = 40 , the computed wake behind the cylinder was seen to

e symmetric and steady. The feature of wake is characterized by

he non-dimensionalized parameters L w 

, a, b and θ as shown in

ig. 4.4 , where L w 

, a, b , and θ represent the length of the recir-

ulation zone, the distance from the cylinder to the center of the

ake vortex, the distance between the centers of the wake vor-

ices, and the separation angle measured from the x -axis, respec-

ively. We compare the numerical results produced by the newly

roposed method at time T = 50 with those obtained in the lit-

rature [4,14,42,54,55,57,66] . The comparison results are listed in

able 4.2 , where the experimental studies are indicated with an

sterisk ∗. Moreover, we use the terms “present method-P ”, “present

ethod-PC ”, and “present method-PCC ” to denote the newly pro-

osed method without correction step (i.e., the method of Noor

t al. [48] but with the Choi–Moin projection scheme [9] ), with

ne correction step, and with two correction steps, respectively.

e find that our numerical results are in very good agreement

ith previous works in the literature. In some cases like θ in

able 4.2 , present method-PC and present method-PCC show bet-

er agreement with literatures than present method-P. We also plot

he instantaneous streamline and the corresponding vorticity con-

ours near the cylinder at time T = 50 for Re = 20 and Re = 40 in

ig. 4.6 and 4.5 . Here, we remark that while the geometric con-

gurations used in the various methods in Table 4.2 may not be

xactly the same, it is widely believed that if the computational

omain is large enough than the diameter of the immersed circu-

ar cylinder, then we can minimize the effect of the outer bound-

ry on the development of the wake. The computational domain,

iameter and center of the circular cylinder of different methods

uoted in Table 4.2 (if available) are reported in Table 4.4 . 

As the Reynolds number increasing, the symmetry of the cylin-

er wake was broken down and the two vortices shed alterna-

ively. In Table 4.3 , numerical results of the maximum drag and

ift coefficients at Re = 100 for various numerical methods are re-

orted. We can find that for this Reynolds number, the present

ethod without correction generates the drag and lift coefficients

hat are slightly larger than other numerical results. The time his-

ories of drag and lift coefficients generated by the present method

ith or without correction step are also depicted in Fig. 4.7 , from

hich we can find that one correction at each time level ap-

ears to be good enough for the present direct-forcing IB pro-

ection method with PC. Thus, in what follows, we will focus

n the present method-PC, unless stated otherwise. Fig. 4.8 and

.9 shows the time evolution of vorticity and pressure contours

f the present method for Re = 100 . Furthermore, Fig. 4.10 shows

he virtual forces distribution and as we have mentioned previ-
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Fig. 4.17. The time evolution of position of the freely falling solid ball in x -coordinate (left) and y -coordinate (right) compared with the results of Glowinski et al. [18] . 
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Fig. 4.18. The time evolution of translational velocity of the freely falling solid ball in x -component (left) and y -component (right) compared with the results of Glowinski 

et al. [18] . 
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usly, the virtual force acts on the whole solid body. Finally, in

ig. 4.11 we depict the sink-source distribution, which is the dis-

ribution of 
∫ 

cell ∇ · u h d x for all cells. As we have pointed out at

he end of Section 2 that the divergence-free condition may be

estroyed in cut cells at which the solid-fluid interface is located,

owever, in this example we can find that the divergence-free con-

ition of the present method-PC is generally satisfied except only

t the leading edge of cylinder. To observe more carefully, these

on-zero divergence spots appear as pairs of mass sink and source

f equal magnitude (doublet), which upholds global mass conser-

ation. This doublet distribution accompanying particularly large

irtual force spots as shown in Fig. 4.10 accommodates jump of

ressure gradient at the immersed boundary that has been well

nalyzed in immersed interface method [35,39,65] . In fact, the idea

f doublet is frequently used in source-doublet panel method to

ompute potential flows [46] . 

.3. The flow past an in-line oscillating cylinder 

In this subsection, we consider the simulation for the flow past

n in-line oscillating cylinder for Re = 100 to validate the present

ethod-PC for moving bodies with a prescribed velocity. The com-

utational domain and numerical details are exactly the same as

hat in Section 4.2 , except the cylinder is now oscillating parallel to

he free stream at a frequency ( f c ) equal to two times the vortex

hedding frequency ( f s ) of the single fixed cylinder, i.e., f c = 2 f s .

he motion of the cylinder is governed by the horizontal velocity

s u s (t, x ) = 0 . 14 D cos (2 π f c t) , where the amplitude of the oscilla-

ion is 0.14 of the cylinder diameter D . This simulation has been

erformed numerically by, e.g., Hurlbut et al. [25] , Noor et al. [48] ,

nd Su et al. [54] . 
It has been observed in, e.g., [48] , that the in-line oscillation

f the cylinder at a range near twice the shedding frequency of

he stationary cylinder would cause the resonance and thus largely

ncrease both the drag and lift forces acting on the cylinder. In

able 4.5 , we show the comparison of the maximum drag and

ift coefficients of the present scheme with the previous studies.

ne can see that the resonance was successfully captured by the

resent method. The instantaneous vorticity contours during a pe-

iod of oscillation are depicted in Fig. 4.12 . 

.4. Two cylinders moving towards each other 

This example is taken from [51] , which provides a demonstra-

ion of flow past multiple moving solid objects. In our simula-

ions, we use a uniform grid of 640 × 320 cells to discretize the

omputational domain � = [ −8 , 24] × [ −8 , 8] and take the time

tep �t = 1 / 200 for the time-discretization. Thus, the CFL number

s 0.1. The boundary conditions are specified to be zero velocity

nd homogeneous Neumann pressure on the whole boundary, see

ig. 4.13 . The Reynolds number is set to be 40. The motion of the

ower and upper cylinders are governed by setting the dynamics of

heir centers ( x lc , y lc ) and ( x uc , y uc ) to 

 lc = 

{ 

4 

π
sin 

(
πt 

4 

)
, 0 ≤ t ≤ 16 , 

t − 16 , 16 ≤ t ≤ 32 

and y lc = 0 , (4.3)

nd 

 uc = 

{ 

16 − 4 

π
sin 

(
πt 

4 

)
, 0 ≤ t ≤ 16 , 

32 − t, 16 ≤ t ≤ 32 

and y uc = 1 . 5 . (4.4)

ot the that both cylinders will oscillate about their initial posi-

ions for two periods, and then toward each other at time t = 16 . 
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Fig. 4.19. The time evolution of drag and lift coefficients of the freely falling solid 

ball. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

c  

g

i  

�  

n  

a  

T  

t  

t  

b  

i  

o  

A

 

t  

t  

l  

g  

w  

p  

o  

f  

a  

s  

r  

e  

t  

b

F

 

a  

F

 

w  

t  

d

 

t  

fl  

w  

o  

i

5

 

d  

fl  

c  

F  

o  

i  

d  

v  

r  

m  
In Fig. 4.14 , the time evolution of drag and lift coefficients for

the upper cylinder compared with the results of Xu and Wang

[65] are displayed. In [65] , Xu and Wang implemented an im-

mersed interface method using the same uniform grid but with a

very small time step �t = 1 / 20 0 0 , which is 1/10 of the time step

used here. The small time step required in [65] is again due to the

need for relaxing and adjusting fluid flow to solid objects. How-

ever, we can observe that the behaviors of the drag and lift co-

efficients of both methods are almost the same and they are also

consistent very well with the results of [51] . As pointed out in [51] ,

the drag is increasing slightly as the two cylinders approach each

other and decreasing to the minimum value when they are clos-

est to each other. After that, the drag then rises back and begins to

approximate the profile of a single cylinder. On the other hand, the

two cylinders are repulsive when approaching each other and then

become attractive after passed each other. Finally, we plot the vor-

ticity and pressure contours at times t = 4 , 16 , 24 , 32 in Fig. 4.15 ,

which exhibits the simplicity and high performance of the present

two-stage approach. 

4.5. A freely falling solid ball 

In this section, we simulate the dynamics of a free-falling solid

body to validate the ability of the current method for solving two-

way coupling problems, where the solid velocity u s is not pre-

scribed. We consider a 2-D solid ball falling in a rectangular tank

filled with an incompressible Newtonian viscous fluid. The set-

tings of simulation are same with that in the work of Glowin-

ski et al. [18] . More specifically, the computational domain is � =
[0 , 2] × [0 , 6] , the diameter of the solid ball �s is D = 0 . 25 and the

center is located at (1, 4) at the initial time t = 0 , the density of

fluid part is ρ f = 1 and solid part is ρs = 1 . 5 . In this example, we

take the fluid viscosity as ν = 0 . 01 . 

To simplify the implementation of current approach, in this ex-

ample, we apply the two-stage direct-forcing IB method combined

with the Chorin first-order in time projection scheme to solve this

two-way coupling problem, where we first derive the following ini-

tial value problems for the equations of motion of the falling solid

ball �s : 

(M s − M f ) 
d u c 

dt 
= (M s − M f ) g −

∫ 
�s 

ρ f F dV, u c (0) = u c0 , (4.5)

( I s − I f ) 
dω 

dt 
= −

∫ 
�s 

ρ f r × F dV, ω(0) = ω 0 , (4.6)

where the solid velocity is defined by 

u s (t, x ) := u c (t) + ω(t) × r (t, x ) , r := x − X c , ∀ x ∈ �s (t) , 
(4.7)

ith the translational velocity u c , the angular velocity ω, and the

entroid X c of the solid ball �s , M s := 

∫ 
�s 

ρs dV, M f := 

∫ 
�s 

ρ f dV,

 is the gravity, I s is the rotational inertia for the solid ball, I f 

s the rotational inertia of �s when the portion of the solid ball

s is replaced by the fluid. As we have mentioned in the begin-

ing of Section 2 , we treat the solid portion like a fluid, but with

n additional virtual force field F = (F 1 , F 2 ) acting on that region.

he virtual force F is distributed on the whole region enclosed by

he immersed boundary, not only on the immersed boundary, such

hat the fluid part inside the region would behave like a real solid

all. The governing equations of motion (4.5) - (4.6) of the solid ball

s similar to the equations derived in [61] , where the virtual force

nly exists on the immersed boundary. We refer the reader to the

ppendix B in [61] for more details. 

We then employ the backward Euler scheme to approximate

he initial value problems (4.5) and (4.6) to obtain the transla-

ional velocity u c , the angular velocity ω, and thus the solid ve-

ocity u s (t, x ) by (4.7) . In our numerical simulation, we take the

rid size h = 1 / 256 and a small time step �t = 7.5e–05. Below,

e present some preliminary numerical results of the free-falling

roblem to validate the ability of the current method. The position

f the freely falling solid ball and the flow field visualization at dif-

erent time is displayed in Fig. 4.16 . The time evolution of position

nd translational velocity of the solid ball compared with the re-

ults of Glowinski et al. [18] are depicted in Fig. 4.17 and Fig. 4.18 ,

espectively. We also show the time evolution of drag and lift co-

fficients of the freely falling solid ball in Fig. 4.19 . In this example,

he drag force F d and the drag coefficient C d should be calculated

y 

 d = −
∫ 
�

F 2 d x = −
∫ 
�s 

F 2 d x ≈ −
∑ 

x i j 

F 2 h 

2 and C d = 

F d 
U 

2 ∞ 

D/ 2 

, 

(4.8)

nd the lift force F 
 and lift coefficient C 
 should be computed by

 
 = −
∫ 
�

F 1 d x = −
∫ 
�s 

F 1 d x ≈ −
∑ 

x i j 

F 1 h 

2 and C 
 = 

F 
 

U 

2 ∞ 

D/ 2 

, 

(4.9)

here we use the terminal speed U ∞ 

= 12 of the solid ball relative

o the fluid. From these numerical results, we can find that the

ynamical behavior is qualitatively similar to that of [18] . 

To conclude, preliminary numerical simulations indicate that

he proposed approach seems to be capable of solving the two-way

uid-solid interaction problems. This study is still in progress and

e will report the detailed derivation of the governing equations

f motion of the solid ball and the improved numerical algorithms

n a future paper. 

. Summary and conclusions 

In this paper, we have proposed a simple and novel two-stage

irect-forcing IB projection method for simulating the dynamics of

uid-solid interaction problems, where each immersed solid object

an be stationary or moving in the fluid with a prescribed velocity.

or the consistency consideration, we have adopted the second-

rder in time Choi–Moin scheme for the projection computations

n the proposed method. This approach can be categorized as a

irect-forcing method with a PC process, in which a time-discrete

irtual force distributed only on the immersed solid bodies is de-

ived, and then added to the fluid momentum equations to accom-

odate the internal velocity boundary conditions at the immersed
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olid boundaries. More specifically, in the prediction stage, based

n the rate of moment changes of the solid bodies, we have pre-

icted the virtual force by using the difference between the pre-

cribed solid velocities and the computed velocities, which are ob-

ained by applying the Choi–Moin projection scheme to the in-

ompressible Navier–Stokes equations on the entire domain with-

ut adding any virtual forcing term. Then, in the correction stage,

e have put the predicted virtual force into the momentum equa-

ions as an additional forcing term and performed the Choi–Moin

rojection again to update the velocity field, pressure and virtual

orce. Apparently, we can iterate this PC procedure to form a more

eneral P(C) k method for k ≥ 2, if necessary. 

We have performed numerical experiments of several bench-

ark problems to illustrate the simplicity and high performance

f the newly proposed two-stage method, including the flow in-

uced by a rotating cylinder inside a square enclosure for conver-

ence test, the flow past a stationary cylinder, the flow past an

n-line oscillating cylinder, and the flow of two cylinders moving

owards each other. In particular, we have found from the conver-

ence test that the order of convergence of the velocity field is ap-

arently better than first order in space in all the 1-norm, 2-norm,

nd maximum norm, while the accuracy of the pressure is of first

rder accurate in 1-norm and 2-norm and is somewhat nearly half

rder accurate in the maximum norm. We have also found that our

umerical results are in very good agreement with previous works

n the literature and one correction at each time step appears to

e good enough for the proposed PC procedure. 

We now give the following remarks to conclude this paper: 

• We believe that the orders of convergence in space of all un-

known functions in the proposed method can be significantly

improved by a more accurate difference scheme in solving the

Neumann Poisson problems (3.7) - (3.8) and (3.14) - (3.15) with a

careful approximation to the right-hand side data. 
• Notice that in this paper, the interaction between the fluid part

and the solid part is of one-way type, since the motion of the

immersed solids is prescribed by a given velocity field u s . How-

ever, the underlying ideas of the proposed direct-forcing IB pro-

jection method with a PC process could be applied to solve

the two-way fluid-solid interaction problems, where the veloc-

ity and trajectory of immersed solid object should be governed

by the equations of motion depending on fluid flow situation.

Indeed, preliminary numerical simulations of the free-falling

process of a 2-D solid ball in an incompressible viscous fluid

reported in Section 4.5 indicate that the proposed approach

seems to be capable of solving the two-way fluid-solid inter-

action problems. 
• The proposed approach in this paper could also be general-

ized to solve the fluid-elastic body interaction problems, where

the elastic structure is modeled by the linear elasticity equa-

tions which is assumed to be quasi-static, isotropic and homo-

geneous and thus undergoes a small deformation. 

For these issues, the effort s are in progress and we will report

he results in the near future. 
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