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a b s t r a c t

An array of cylindrical structures are often used as a frame of an offshore platform.
The prediction of hydrodynamic loadings on those cylindrical structures due to oscillatory
flows is one of the most important issues in the design of those offshore structures. The
aim of this study is to apply a direct-forcing immersed boundary method to simulating the
oscillatory flow past a circular cylinder array in a square arrangement. The finite volume
method was used to solve the Navier–Stokes equations. In this study, the effects of
Keulegan–Carpenter (KC) number, oblique flow and the gap among four cylinders were
investigated. Numerical results were visualized using vorticity contours so evolutions of
oscillatory flow with the cylinder array were presented. Hydrodynamic loadings including
in-line and transverse force coefficients were determined and illustrated in the time and
spectral domains. Essentially, the proposed direct-forcing immersed boundary approach
can be useful for scientists and engineers who would like to understand the interaction of
the oscillatory flow with an array of cylinders and to estimate hydrodynamic loadings on
the array of cylinders.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction between an oscillatory flow and structures often occurs in nature and numerous engineering appli-
cations. For example, to obtain oil in an offshore region, a tension-leg platform is used and encounters oscillatory flows due
to a wave train or tide. Another example is a wave energy power station which may consists of a cylinder array for its frame
(see Langlee, 2006). Those structures with a circular cylinder array in an offshore region receive hydrodynamic loadings
from waves. While predicting the hydrodynamic loadings on the circular cylinders, it is important to explore the temporal
variation of hydrodynamic loadings on those cylinders. For example, the so-called “ringing” effect refers to a fast and high
frequent hydrodynamic damage on an offshore platform (see Spidsoe and Karunakaran, 1996). Due to this reason, the
oscillatory flow around a circular cylinder array has been studied by Anagnostopoulos and Dikarou (2011). The aim of this
study is to establish a numerical model to predict the hydrodynamic loading on circular cylinders using an immersed
boundary method.
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The oscillatory flow past cylinders has attracted the interest of researchers in the past few decades. Sarpkaya (1986)
performed an experiment to measure the in-line force coefficients for a circular cylinder in planar oscillatory flows with
small amplitudes. He provided theoretical and experimental results of inertia coefficient and flow visualization. Subsequ-
ently, Obasaju et al. (1988) measured the total forces and spanwise correlation of vortex shedding was presented for
a circular cylinder in the planar oscillatory flow. The flow variations were classified as the asymmetric, the transverse, the
diagonal, the third vortex, and the quasi-steady regimes at Keulegan–Carpenter numbers from 4 to 55 and the viscous
parameter β from 100 to 1665. Sumer and Fredosoe (1997) reviewed previous studies about the oscillatory flow around a
circular cylinder. They described the flow pattern and the resulting load when the waves or currents interact with a cylinder.
Kuhtz et al. (1997) measured forces on immersed bodies at low Reynolds numbers in an oscillatory flow. With the increase
in efficiency of digital computers, a number of researchers studied the interaction between the oscillatory flow and cylinders
by numerical simulations. Iliadis and Anagnostopoulos (1998) used the finite element method to investigate the oscillatory
flow around a circular cylinder at low KC numbers and varying β. The in-line and the transverse forces on the circular
cylinder were determined and reported. Zheng and Dalton (1999) used the finite difference method to study oscillatory flow
past a square cylinder at KC numbers up to 5. They presented flow patterns around a square cylinder and predicted force
on the square cylinder. The influence of blockage ratio was investigated by Anagnostopoulos and Minear (2004). They
described the effect of the width of the computational domain on an oscillatory flow past a circular cylinder. By altering the
blockage ratio, they investigated the influences of the hydrodynamic force and vortices on cylinders. The results showed
that the blockage effect cannot be neglected for the blockage ratio higher than 20%. An et al. (2006) study the oscillatory
flow past two cylinders in a tandem arrangement. They investigated the effect of the gap between two cylinders and KC
numbers. Recently, An et al. (2011) simulated the three dimensional oscillatory flow around a circular cylinder at low KC
numbers. They found that the spacing between Honji vortices is strongly correlated with KC number. Zhao et al. (2011)
simulated a three dimensional oscillatory flow around a circular cylinder at right and oblique attacks. They described
streamlines around the cylinder at successive time steps and compared the hydrodynamic forces with the right attack case.
Suthon and Dalton (2011) established a 3-D finite-difference spectral scheme to explore the 3-D flow around an oscillating
circular cylinder at low KC number. They reported the mushroom structures in the near wake which are called the Honji
instability.

The flow past two or more cylinders has been reported in a number of published manuscripts. Williamsion (1985)
employed the flow visualization technique to study an oscillatory flow past a circular cylinder and a pair of circular cylinders
at different KC numbers. A pair of cylinders in side-by-side, oblique and tandem arrangements were considered in experi-
ments. He studied the effect of gap between two cylinders on flow variation and hydrodynamic forces. Chern et al. (2010)
studied the interaction of oscillatory flows with a pair of side-by-side square cylinders. They investigated the influence with
various KC numbers, Reynolds numbers, and cylinder gap. Anagnostopoulos and Dikarou (2011) carried out the viscous
oscillatory flow past four cylinders at β¼50 and KC range from 0.2 to 10. The hydrodynamic forces on those cylinders,
flow field and the effect of pitch ratio were reported. Lam and Zou (2010) presented the three dimension numerical
simulations of cross flow around four cylinders. They investigated the effect of spacing ratio and aspect ratio and illustrated
the difference between 2-D and 3-D simulations.

Nomenclature

Cf in-line force coefficient, �2Fin
Cl transverse force coefficient, �2Ft
C f root mean square of in-line force coefficient
Cl root mean square of transverse force

coefficient
D dimensionless diameter of cylinder
Fin dimensionless force in the flow direction
Ft dimensionless force in the transverse

direction
f dimensionless frequency of Cl
fo dimensionless frequency of oscillatory flow
F total dimensionless virtual force
f dimensionless virtual force per unit mass
KC Keulegan–Carpenter number, UmT=D
P dimensionless distance between of two neigh-

boring cylinders
p dimensionless pressure
R dimensionless radius of cylinder
Re Reynolds number, UmD=ν

T dimensionless period of oscillating flow
t dimensionless time
Um amplitude of oscillating flow
uðu; vÞ dimensionless velocity
x, y dimensionless Cartesian coordinates

Greek symbols

β viscous parameter, Re/KC
η the volume of solid function
ν kinematic viscosity of fluid, m2 s�1

Subscripts

s solid

Superscripts

m time level
n intermediate time level
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The capability to handle complex geometries and computational time has been the main issues in computational fluid
dynamics. An immersed boundary method has been proven to be able to deal with a complex geometry and a moving body.
The immersed boundary method has been getting popular in recent years since it was introduced by Peskin (1973). A virtual
force due to the existence of a solid object is used as a body force in the momentum equation while Peskin's immersed
boundary method is adopted. A Dirac delta function is employed to distribute the virtual force from the solid object to the
fluid flow. The immersed boundary method which added a virtual force in the momentum equations to simulate the effect
of solid. One of the immersed boundary methods is the so-called direct-forcing method proposed by Yusof (1996).
The direct-forcing method determines a forcing term by calculating the difference between the interpolated velocities on
the boundary points and the desired solid boundary velocities. This idea of the direct-forcing method has been adopted and
obtained successful applications. Fadlun et al. (2000) developed combined immersed boundary finite difference methods for
three dimensional complex flow simulations. Su et al. (2007) used the immersed boundary technique for the simulation of
flow interacting with solid boundary. Noor et al. (2009) study the fluid–solid interaction problems using the current
proposed direct-forcing immersed boundary method.

The aim of this study is to apply a direct-forcing immersed boundary method to simulating the oscillatory flow past four
circular cylinders array in a square arrangement. To investigate the influences of KC number, the flow direction, and the gap
ratio, hydrodynamic forces, flow patterns and phase diagrams were discussed in the study.

2. Mathematical formulae and numerical model

In this study, the direct-forcing immersed boundary method is used to simulate a solid object in fluid flow. In order to
solve the interaction between fluids and solids, a virtual force is added to Navier–Stokes equations for incompressible fluid
flow. Details of governing equations for fluids and the direct-forcing immersed boundary methods are explained in the
following sections.

2.1. Governing equations

An incompressible viscous fluid is considered in the present study. Following the rules of conservation of mass and
momentum, we adopt dimensionless form shown as

∇ � u¼ 0 ð1Þ
and

∂u
∂t

þ∇ � uuð Þ ¼ �∇pþ 1
Re

∇2uþf; ð2Þ

where u and p are dimensionless velocity and pressure, respectively. Re is the Reynolds number and denoted by UmD=ν,
where Um is the amplitude of the oscillatory flow, D is the cylinder diameter and ν is the kinematic viscosity of the fluid.
It should be noted that there is a virtual force term denoted as f in Eq. (2). This term is added in order to accommodate
interaction between solids and fluids. It is determined from

f ¼ η
us�uf

Δt
; ð3Þ

where η is defined as the volume fraction of a solid at a computational cell. If a cell is full of solids, then η will be 1. On the
other hand, η is equal to zero for a cell full of fluids. In this study, η is located at the center of a computational cell.
For example, consider a circular cylinder in the flow domain. If the distance between the center of the cylinder and the
center of a cell is less than the radius of the cylinder, then η will be 1. On the other hand, η is zero when the distance is
greater than the radius. The prescribed velocity of the solid is us. In this study, cylinders are fixed so us is zero for all
cylinders.

2.2. Oscillatory flow boundary condition

In order to simulate the flow due to a progressive wave train, oscillatory flows are considered in this study. Transient
velocity boundary conditions are imposed at four boundaries of the computational domain to simulate oscillatory flows as
shown in Fig. 1. Consider an oscillatory flow of dimensionless period T. The dimensionless horizontal velocity component of
the oscillatory flow varies according to the condition

u¼ sin
2πt
T

� �
and v¼ 0; ð4Þ

while boundary conditions of the oblique flow are given as

u¼ sin
2πt
T

� �
cos

π

4

� �
and v¼ sin

2πt
T

� �
sin

π

4

� �
: ð5Þ
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2.3. Calculation of hydrodynamic force on cylinder

In this study, the integral of the virtual force will be approximation of the dimensionless resultant force exerted on a
single circular cylinder, i.e.,

F¼∭Ωf dV : ð6Þ

Fig. 1. Schematic of interaction of (a) a horizontal oscillatory flow with a single circular cylinder, (b) a horizontal oscillatory flow with four circular
cylinders, (c) an oblique oscillatory flow with four circular cylinders.
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Subsequently, the in-line and lift force coefficients, Cf and Cl, can be determined from

Cf ¼ �2 � Fin ð7Þ
and

Cl ¼ �2 � Ft ; ð8Þ
respectively. The r.m.s. values of in-line force and transverse force in dimensionless form are defined as

Cf ¼
1
T

Z T

0
C2
f dt

� �1=2

ð9Þ

and

Cl ¼
1
T

Z T

0
C2
l dt

� �1=2

; ð10Þ

as mentioned in Anagnostopoulos and Dikarou (2011), respectively.

2.4. Numerical procedures

The momentum equation, Eq. (2), is solved in three steps. First, the velocity is stepped from the nth time level to the first
intermediate level “n” by solving the advection–diffusion equations without the pressure gradient and the virtual force at
the beginning of each time step. This step is implemented by the following formula:

un�um

Δt
¼ Sm; ð11Þ

where Sm includes the convective and diffusive terms in Eq. (2).
The intermediate velocity un in Eq. (2) does not satisfy the continuity equation (1). At the second step, un is marched to

the second intermediate velocity unn by including the pressure gradient term

unn�un

Δt
¼ �∇pmþ1: ð12Þ

Taking the divergence of Eq. (12) gives

∇ � unn�∇ � un

Δt
¼ �∇2pmþ1; ð13Þ

which is solved by the SOLA algorithm proposed by Hirt et al. (1975). Furthermore, we update the velocity to the ðmþ1Þth
time level by imposing the virtual force term as follows:

η
umþ1�unn

Δt
¼ fmþ1: ð14Þ

The virtual force term, fmþ1, in Eq. (14) reveals the existence of a force to hold or to drive a solid body when it is stationary
or moving. To satisfy the no-slip boundary condition for the solid motion, the force acting on the solid should make sure that
the fluid velocity u is equal to the solid velocity us at the (mþ1)th time step, i.e., umþ1 ¼ umþ1

s . Therefore, the virtual force is
defined as the rate of momentum changes of solid body and proportional to the difference between the solid velocity at the
(mþ1)th time step and the fluid velocity at the mth time step. The force exists at the fluid domain where the solid body is
immersed and zero elsewhere. Furthermore, it can be simply written as

fmþ1 ¼ η
umþ1�unn

Δt
¼ η

umþ1
s �unn

Δt
: ð15Þ

The cylinders are stationary, so us is always zero for all cylinders in simulations.
The finite volume method is used to solve the momentum equations in this study. The advective scheme is discretized

by the third QUICK scheme. The Adams–Bashforth scheme is used to solve the temporal derivative. Nonuniform grids are
utilized as shown in Fig. 2. The grid space is reduced toward a cylinder and determined by the following formula (Kuyper
et al., 1993):

xi ¼
i

imax
�k
θ
sin

iθ
imax

� �
; ð16Þ

for the ith node. The term θ¼ 2π stretches both ends of a domain whereas θ¼ π clusters more grids in one end of a domain.
The term k varies between 0 and 1. As k approaches 1 more grids are clustered near the end. Moreover, uniform grids are
used in the tight area adjacent to a cylinder. There are 250�220 and 430�430 grids used for a single cylinder and four
cylinders, respectively. The tight area adjacent to a cylinder adopts Δx¼Δy¼ 0:028. The time increment Δt ¼ 10�4 satisfies
the CFL condition. The convergence criterion D¼ 10�4 for the maximum mass residual is employed in this study. The total
time of the simulation is 230. It takes more than 2 days for a simulation of 2-D oscillatory flow around a cylinder at a PC
cluster consisting of AMD Athlon CPU 1913 MHz.

M.-J. Chern et al. / Journal of Fluids and Structures 43 (2013) 325–346 329
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Fig. 2. Schematic of nonuniform grids with (a) a single circular cylinder, (b) four circular cylinders.
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2.5. Validation of the numerical model

2.5.1. Domain description and validation method
Fig. 1(a) shows the schematic of the benchmark test problem which is concerned with an oscillatory flow past a single

cylinder. The computational domain is 25D�20D. The cylinder is located in the middle of the computational domain.
In order to validate the established numerical model, a comparison has been done with two cases involving numerical
methods and one experimental case. Simulations are done for KC¼2 and 10 and Re¼200. The experimental data used for
comparison was the variation of the root mean square value of in-line force with KC, for β¼53.

2.5.2. Grid independence and validation
To show the grid independence in the numerical results, several grid systems are considered for oscillatory flow past a

single cylinder at KC¼2 and Re¼200. The results are shown in Fig. 3. The wake is elongated as time marches. The predicted
wake length in the model agrees with Iliadis and Anagnostopoulos (1998). The result from grids 250�220 is more accurate
than that by 150 �130. Also, as 250�220 grids are used, it takes less time than the case with 290 �250 grids. Therefore,
250�220 grids are adopted for computation in this study. In addition, we compare the predicted in-line force Cf with other
studies. Fig. 4(a) and (b) shows the time histories of Cf at KC¼2 and 10. It is found that Cf will reach the maximumwhen the
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oscillatory flow changes its direction and Cf decreases as the KC number increases. The results agree with those of the Iliadis
and Anagnostopoulos (1998) study. Subsequently, the root mean square value of Cf is compared with experimental evidence
by Kuhtz (1996) in Fig. 5. It shows a good agreement between computed and measured values. Those two test results show
that the established model is able to simulate the interaction of oscillatory flow with a single cylinder and prediction of
hydrodynamic loading is reasonable.

3. Results and discussion

The schematic of the oscillatory flow past a circular cylinder array in a square arrangement is shown in Fig. 1(b).
The distance between centers of two neighboring cylinders is denoted by P. The pitch ratio P/D is one of the parameters that

0 2 4 6 8 10

0

20

40

60

Stoke-Wang theory
Kuhtz(1996)
present study

Cf

KC

Fig. 5. Root mean square value of Cf as a function of KC for β¼53.

Fig. 6. Snapshots of vorticity contours in the horizontal oscillatory flow interacting with four cylinders during a cycle at KC¼2, P=D¼2 and β¼50.
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affect the hydrodynamic behavior around those cylinders. A variety of effects on the interaction of oscillatory flows with the
cylinder array are demonstrated in the following sections.

3.1. Effect of KC number

A dimensionless parameter referred to KC number ðUmT=DÞ is used to express the stroke (UmT) of the orbital motion of
fluid particles in relation to the diameter (D) of the cylinder. A closer examination of the Navier–Stokes equation shows that

Fig. 7. Snapshots of vorticity contours in the horizontal oscillatory flow interacting with four cylinders during a cycle at (a) KC¼5, (b) KC¼10; P/D¼2 and
β¼50.
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the KC number can also be explained as the ratio of the convective to the unsteady force terms. In this regard, the ratio of the
Reynolds to the KC numbers produces another dimensionless parameter known as β. Hence, β is a ratio of the unsteady to
the viscous force terms in the Navier–Stokes equation. The physical relevance of β might be to identify the unsteady state
regime of the oscillatory flow. In order to investigate the KC number effect on a horizontal oscillatory flow past a circular
cylinder array at P/D¼2 and β¼50, KC varies from 2 to 40 in this study. The KC effect is explained in the following
subsections.

3.1.1. Flow patterns
Fig. 6 shows the evolution of vorticity contours around four cylinders within a cycle at KC¼2. The vortices occur

alternatively in two sides and are attached on each cylinder. The flow pattern is symmetric with respect to the horizontal
central line of the domain. Those vortical systems do not interact with each other. As KC number increases to 5, the vortices
are no longer attached, having been shed from the cylinders. The vortices interact with others and the flow pattern becomes
asymmetric as shown in Fig. 7(a). When the KC number is 10 as shown in Fig. 7(b), the vortical systems become more
chaotic in comparison with the case at KC¼5. Those vortices are not damped until they travel far away from cylinders.

3.1.2. Variation of Cf with KC
The in-line force coefficient Cf is an important physical quantity in an oscillatory flow field. The results are compared

using a variety of KC numbers to simulate an oscillatory flow past a circular cylinder array. Fig. 8 demonstrates the time
histories of Cf on the first cylinder. The maximum occurs at KC¼2 in Fig. 8(a) and Cf behaves sinusoidally. It is similar to the
single cylinder case. As KC increases to 5, the sinusoidal form of Cf is not regular any more as shown in Fig. 8(b). When KC is
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Fig. 8. Time histories of Cf of the first cylinder at (a) KC¼2, (b) KC¼5, (c) KC¼10, (d) KC¼20, (e) KC¼30, (f) KC¼40; P/D¼2 and β¼50.
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Fig. 9. Time histories of Cl of the first cylinder and spectrum analysis at (a) KC¼2, (b) KC¼5, (c) KC¼10, (d) KC¼20, (e) KC¼30, (f) KC¼40; P/D¼2 and
β¼50. fo is the frequency of the oscillatory flow.
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raised to 10, the amplitude of Cf fluctuates intensely and the amplitude of Cf decreases again. For high KC numbers varying
from 20 to 40, Cf is smaller than those at KC¼2, 5 and 10. The value of Cf does not vary significantly at high KC. As KC number
increases, it is found that the decrease of Cf is similar to the case of a single cylinder (Fig. 5). The influence of the vortices on
the cylinders is more pronounced and the vortices travel farther from the cylinders due to the induced velocity effect.

3.1.3. Variation of Cl with KC
Fig. 9 depicts the time histories of Cl on the first cylinder and their spectrum analysis for various KC numbers. When KC is

2 in Fig. 9(a), the vortices are attached to each cylinder and the flow pattern is symmetric with respect to the horizontal
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Fig. 10. Phase diagrams of Cf versus Cl of the first cylinder at (a) KC¼2, (b) KC¼5, (c) KC¼10.
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central line of the domain. According to the spectral analysis of Cl, the ratio of fundamental frequency of Cl to the frequency
of the oscillatory flow is 1. This means that the fundamental frequency of Cl and that of the oscillatory flow are equal. That is,
the variation of Cl is only dominated by the oscillatory flow. The absence of vortex shedding can be thought of as being the
result of insufficient time required for shedding, since KC is only equal to 2. As KC increases to 5 in Fig. 9(b), Cl becomes

Fig. 11. Snapshots of vorticity contours in the oblique oscillatory flow interacting with four cylinders during a cycle at (a) KC¼5, (b) KC¼10; P/D¼2 and
β¼50.
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irregular and larger than the case at KC¼2. The ratio of the fundamental frequency of Cl to that of the oscillatory flow shifts
from 1 to 2. This jump in frequency is due to vortex shedding, which is made possible owing to sufficient time for the
evolution of a pair of vortices, since KC is now larger. As KC increases to 10 in Fig. 9(c), the variation of Cl becomes faster and
more irregular. The ratio of fundamental frequency of Cl to that of the oscillatory flow is 3 at KC¼10. In high KC numbers,
the ratio becomes 3.81 at KC¼20, 5.70 at KC¼30 and 6.71 at KC¼40. Seemingly, a trend that suggests the increase of
the fundamental frequency of Cl with an increase in KC exists. According to those results, more subharmonics appear in the
spectrum analysis as KC increases. The appearance of the subharmonics is due to the difference in the vortex shedding and
fluid oscillatory frequencies. This difference induces secondary frequencies. This is because more vortices occur at high KC
numbers. Complex vortex motion excites more subharmonics in the spectrum of Cl. Therefore, when KC increases, it can
be expected that more vortices are generated and more subharmonics appear in the spectrum. Also, the fundamental
frequency of Cl becomes faster than the frequency of the oscillatory flow.

3.1.4. Phase diagram of Cf versus Cl
The hydrodynamic forces exerted on cylinders can be regarded as the responses of the vortical systems around those

cylinders. The trajectories of Cf versus Cl at successive instants reveal the states of the vortical systems. Fig. 10 shows the
phase diagram of Cf versus Cl of the first cylinder at various KC numbers. A case of zero lift occurs at KC¼2 as shown in
Fig. 10(a). The reason for such a trajectory is that the vortical system is symmetric at KC¼2. Thus if Cl is very small then the
trajectory will be almost periodic. As KC increases to 5, the vortices influence each other, leading to a larger value of Cl as
compared with the case at KC¼2. The trajectory resembles the number “8” as shown in Fig. 10(b). Moreover, the trajectory is
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very chaotic when KC increases to 10 as shown in Fig. 10(c). The figures illustrate that the vortical system changes from a
periodic to a chaotic state with increasing KC numbers.

3.2. Effect of oblique flow

We investigate a 451 oblique oscillatory flow past a circular cylinder array at P/D¼2 and β¼50 in this section. Two KC
values, 5 and 10, are considered. The effects of oblique flow on hydrodynamic loadings and flow patterns are discussed.

3.2.1. Flow patterns
Fig. 11 shows the evolution of vorticity contours around a circular cylinder array during a cycle. The flow pattern is

symmetric with respect to the oblique diagonal line of the domain at KC¼5 as shown in Fig. 11(a). All of the vortices occur in
alternating sequence on different sides of those cylinders. This result is different from an in-line oscillatory flow past those
cylinders at KC¼5, since the vorticity contours in the in-line flow are asymmetric. The symmetry in those vortical systems
vanishes as KC is increased to 10 as shown in Fig. 11(b). The vortices are shed from the cylinders downstream and the travel
distance is longer than that at KC¼5. In general, the vortical system becomes irregular as KC changes from 5 to 10.

3.2.2. Variations of Cf in in-line and oblique oscillatory flows
In order to investigate the effect of the angle of attack between the oscillatory flow and the in-line axis of the cylinder

array, the hydrodynamic loadings in the in-line and oblique flows are compared. The values of Cf on each cylinder in the
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Fig. 13. Time histories of Cf of each cylinder in in-line and oblique oscillatory flows at KC¼10, P/D¼2 and β¼50.
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oblique flow are almost the same as those results in the horizontal flow at KC¼5, as shown in Fig. 12. The amplitude of Cf
fluctuates intensely, Cf is slightly larger than the in-line flow case in Fig. 13, when KC number increases to 10.

3.2.3. Variations of Cl in in-line and oblique oscillatory flows
Fig. 14 shows that Cl on all the cylinders in the oblique flow is smaller than that in the in-line flow at KC¼5 due to the

flow patterns which are symmetric with the oblique diagonal line of the domain at KC¼5. In particular, values of Cl on the
first and the fourth cylinder have minimal fluctuation in the oblique flow. The values of Cl for the second and the third
cylinder are significantly different compared to the values of the first and the fourth cylinder. Nevertheless, the results at
KC¼10 as shown in Fig. 15 are contrary. As KC increases to 10, the flow patterns change from symmetric to asymmetric as
time marches. The values of Cl on all the cylinders in the oblique flow are larger than those in the in-line flow. According to
the spectral analysis of Cl on the second and the third cylinder, the ratios of fundamental frequency of Cl to the frequency of
the oscillatory flow are 2 at KC¼5 and 2.7 at KC¼10. In the oblique flow, it has the same trend that the fundamental
frequency of Cl increases with increasing KC.

3.2.4. Comparison of the C f and C l with in-line flow
The root mean square values of Cf and Cl in the horizontal and oblique flows are determined and shown in Table 1.

Comparing the oblique and in-line flow directions, the values of Cf remain almost the same at the same KC number.
The values of Cl do not have a significant trend. The value of Cl in the in-line oscillatory flow is larger than that in the
oblique oscillatory flow at KC¼5. At KC¼10, Cl in the oblique oscillatory flow is larger than that in the in-line oscillatory
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Fig. 14. Time histories of Cl of each cylinder in in-line and oblique oscillatory flows at KC¼5, P/D¼2 and β¼50.
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flow. Moreover, in the oblique oscillatory flow, it is found that Cl on the second cylinder in the transverse flow direction is
larger than that on the first cylinder in the in-line flow direction.

3.2.5. Phase diagram of Cf versus Cl
According to Fig. 16, it is evident that the trajectory has a regular pattern on each cylinder at KC¼5. The trajectories of the

first and the fourth cylinder are close to a straight line which is the same as the trajectories in the in-line oscillatory flow at
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Fig. 15. Time histories of Cl of each cylinder in in-line and oblique oscillatory flows at KC¼10, P/D¼2 and β¼50.

Table 1
Variation of C f and C l with respect to KC at β¼50.

Flow direction KC number C f C l

Horizontal (cyl 1) KC¼2 7.510 0.245
KC¼5 2.828 1.313
KC¼10 1.687 0.906

Oblique (cyl 1) KC¼2 7.152 0.050
KC¼5 3.003 0.053
KC¼10 1.719 0.983

Oblique (cyl 2) KC¼2 7.740 0.219
KC¼5 3.006 0.981
KC¼10 1.817 1.183
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KC¼2. The trajectories of the second and the third cylinders look like the number “8”. They are similar to the trajectories in
the horizontal flow. Nevertheless, when KC increases to 10, the vortical system becomes chaotic, so the trajectories of all the
cylinders become very disordered and unpredictable.
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3.3. Effect of pitch ratio

The pitch ratio P/D is one of the important factors when a cylinder array is designed in an offshore platform. In order to
investigate the pitch ratio effect on an in-line oscillatory flow past a circular cylinder array at KC¼5 and 10 and β¼50, four
various pitch ratios 2, 3, 4 and 5 are considered.

Fig. 17 shows the time histories of Cf exerted on the first cylinder with a variety of pitch ratios at KC¼5 and 10. It seems
that Cf does not change at KC¼5 when P/D varies. It is because the flow patterns are symmetric with respect to the in-line
flow direction in those P/D values. The flow patterns are no longer symmetric and affected by P/D at KC¼10, so the values of
Cf are different when P/D varies. Fig. 18 shows the time histories of Cl exerted on the first cylinder, with different pitch ratios
at KC¼5 and 10. Their spectrum analysis of Cl is also illustrated. The value of Cl reaches a maximum at P/D¼2 and becomes
smaller when P/D is larger than 2. According to the spectrum analysis of Cl, the fundamental harmonic has the maximum at
P/D¼2 and becomes smaller when P/D gets larger than 2. The ratio of the fundamental frequency of Cl to the oscillatory flow
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frequency for different P/D is 2. However, the results are contrary at KC¼10 as shown in Fig. 18. The value of Cl is a minimum
at P/D¼2 and the magnitude of Cl becomes larger as P/D increases. The fundamental harmonic has a minimum at P/D¼2 in
the spectrum and becomes larger as P/D increases. The magnification of Cl is delayed with the increase of P/D. The results
show that Cf is almost the same as P/D increases, but Cl, or its fundamental frequency, varies as P/D increases. The root mean
square values of Cf and Cl for different P/D are compared and shown in Fig. 19. The result is in agreement with previous
studies by Anagnostopoulos and Dikarou (2011). In their work, for all P/D cases, Cf decreases as KC increases and is almost
fixed at each P/D for the same KC number. The value of Cl is larger at P/D¼2 when KC is smaller than 5. However, Cl does not
have a trend for increasing P/D when KC is larger than 5.

4. Conclusions

The present study has numerically investigated an oscillatory flow past a circular cylinder array to predict the
hydrodynamic force on those cylinders. The direct-forcing immersed boundary method has been adopted to handle
complex configurations of four cylinders in the Cartesian coordinates. The validation exercise has yielded positive results,
most of which are in good agreement with the collected numerical and experimental data. The proposed direct-forcing
immersed boundary model was validated by an oscillating flow interacting with a single cylinder at KC¼2 and 10. The
established numerical model was further applied to simulate oscillatory flows around four cylinders in a square
arrangement at different conditions. There are three features that have been examined in this study. These are the effects
of (i) increasing KC number, (ii) oblique angle, and (iii) pitch ratio.
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The analysis for increasing KC numbers shows that more vortices occur at high KC numbers. The vortical systems become
more chaotic and the vortices travel far away from the cylinders. Consequently, more vortices are generated and more
subharmonics appear in the corresponding spectrum of lift coefficient Cl. It is also noted that the root mean square value of
in-line force coefficient Cf is inversely proportional to KC. The fundamental frequency of Cl becomes faster and more
subharmonics are excited as KC increases. The interaction of vortices results in a situation where the fundamental frequency
of Cl overrides that of the oscillatory flow.

In order to investigate the effect of the oblique flow, the oscillatory flow direction becomes parallel to the diagonal axis of
the cylinder array. The flow pattern is symmetric at KC¼5. This result is different from an in-line flow past those cylinders.
The comparison of Cf and Cl with the in-line and oblique oscillatory flows shows that Cf is not affected by the flow direction,
while Cl becomes smaller at KC¼5. In particular, the Cl values on the first and the fourth cylinder have minimal fluctuation in
the oblique flow, but Cl becomes larger at KC¼10. Moreover, in the oblique oscillatory flow, it is found that Cl on the second
and the third cylinder is larger than that on the first and the fourth cylinders.

In addition, the effect of pitch ratio P/D is investigated. The results show that Cf is not affected by the pitch ratio. When KC
is smaller than 5, Cl reaches the maximum at P/D¼2 but remains at the same value for increasing P/D. As P/D increases, the
predicted flow fields become close to the interaction of an oscillatory flow past a single circular cylinder.
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