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ABSTRACT 

Vortex-induced vibration (VIV) is an important physical phenomenon as one design a riser or a cylin-
drical structure in ocean.  As the riser or the cylindrical structure is adjacent to a seabed, the boundary 
effect on VIV is not fully understood yet.  The direct-forcing immersed boundary (DFIB) method is used 
to investigate a two-degree-of-freedom VIV of a flexible supported circular cylinder adjacent to a plane 
boundary in this study.  Furthermore, the effect of the VIV of cylinder on skin friction of the plane 
boundary is investigated.  The effects of varying reduced velocity and gap ratio on VIV are discussed.  
Only a single vortex street is found when the cylinder is close to plane boundary.  Hydrodynamic coeffi-
cients of the freely vibrating cylinder are analyzed in time and spectral domains.  Furthermore, nearly 
round oval-shaped motion is observed as the so-called lock-in phenomenon occurs.  The skin friction of 
the plane boundary is predicted by the DFIB model.  Results show that the vibrating cylinder in the 
boundary layer flow can reduce the friction effectively.  This proposed DFIB model can be useful for the 
investigation of VIV of the structures under the plane boundary effect even for a small gap between the 
cylinder and the boundary. 

Keywords: Direct-forcing immersed boundary method, Vortex-induced vibration, Boundary layer flow, 
Lock-in. 
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1.  INTRODUCTION 

Vortex-induced vibration (VIV) of structures is one of 
the important issue in ocean engineering.  Vibration of a 
pipeline or a riser under water is a typical VIV example.  
VIV exists under the action of unsteady hydrodynamic 
forces arising from alternate vortex shedding behind a 
solid body immersed in fluid flow.  As vortices shed, 
the periodic forces exert on the solid body in a flow field.  
Self-excited vibrations would be induced when the 
vortex-shedding frequency is close to its natural fre-
quency.  This is the so-called lock-in phenomenon.  It 
is often to deploy those risers or cylindrical structures 
near the seabed.  VIV is also found under the influence 
of the seabed.  Details of VIV affected by the seabed is 
still not completely studied, so it is necessary to explore 
the effect of the seabed or a plane boundary on VIV as 
the risers or cylindrical structures are used above the 
seabed.  Herein, a circular cylinder is considered as the 
cylindrical structure in ocean.  The other issue of VIV 
of a cylinder adjacent to a plane boundary is its effect on 
friction of the boundary.  Vortex-induced vibration of 
a circular cylinder near a solid structure such as an airfoil 
or another big cylinder can be used as a passive control 
method for drag reduction for the airfoil or the big cyl-
inder [1].  The boundary layer flow above a rigid 
boundary is disturbed by the vibrating body and subse-
quently the friction drag over the rigid boundary is 
reduced.  Strykowski and Sreenivasan [2] studied the 
vortex-shedding behind circular cylinders by a proper 
placement of a second, much smaller, cylinder in the near 
wake of the main cylinder.  The other application re-
ported by Igarashi [3] places a small circular cylinder 
upstream of the prism controlling the surface flow and 
the free shear layer that separates from the bluff body 
and effectively reduces drag.  Huang and Mao [4] 
reported the study in a passive self-excited, transversely 
oscillating-rod technique for the separation control of the 
boundary layer on the cantilever wing.  Their results 
reveal that VIV in the transverse direction can be used 
for modulation of surface flow.  Yang et al. [5] under-
took the experiments of a freely vibrating cylinder with 
single-degree-of-freedom and close to a rigid plane 
boundary in a flume.  Their investigations showed that 
whether the small circular cylinder is fixed or vibrating, 
placing it near a solid boundary could significantly affect 
the surface flow and change the aerodynamic coefficient.  
All those technical papers indicate that the surface 
flow above a rigid boundary is affected by the vibrating 
circular cylinder above it.  Apparently, the distribution 
of shear stress is changed and the resultant friction is 
reduced.  The seabed may be also affected by the 
change of shear stress due to VIV of the adjacent risers 
or cylinder structures and its topography may be 
changed. 

Numerical simulations for VIV have been conducted 
by a number of researchers.  For example, Singh and 
Mittal [6] utilized the stabilized space-time finite- 
element method to simulate two degree-of-freedom 
(2DOF) VIVs of a circular cylinder.  They predicted the 
lock-in phenomenon and hysteresis.  2S and P+S vor-
tex-shedding modes were also shown and explained in 

their study.  Dettmer and Perić [7] adopted the finite 
element method with an arbitrary Lagrangian-Eulerian 
(ALE) strategy to simulate the one-degree-of-freedom 
(1DOF) VIV of circular and rectangular cylinders.  
Responses of lock-in phenomena were successfully pre-
dicted.  Du et al. [8] considered an elastically-mounted 
cylinder in compressible flow.  An immersed boundary 
method was employed to solve 1DOF VIVs in the trav-
erse direction.  Three-dimensional flow variation due to 
VIV was shown and the P+S and 2P modes were found 
in the solutions.  Chern et al. [9] undertook simulations 
for the 2DOF VIV.  2S and C(2S) vortex shedding 
modes were found in the 2DOF VIVs.  The slightly 
oval and eight-shape trajectories in the lock-in region 
were predicted properly. 

Despite VIV in a uniform current has been numeri-
cally solved by those researchers, it is a challenging issue 
as the vibrating cylinder close to a plane boundary.  It is 
due to the narrow gap between the cylinder and the 
boundary.  For those numerical methods using a bound-
ary- fitted grid, it is difficult to use a very small and dis-
torted grid to simulate the gap flow.  Especially, when 
the cylinder vibrates above the boundary and almost 
touch the boundary, it becomes extremely arduous to 
utilize this distorted grids for simulations of the gap flow.  
Zhao and Cheng [10] gave numerical examples using the 
distorted grids and the ALE approach to simulate VIV of 
a cylinder above a plane boundary.  To overcome the 
problem, an immersed boundary method which does not 
need a distorted grid for the complex solid geometry is 
used as an alternative numerical approach.  An im-
mersed boundary method simulates the solid motion us-
ing the Lagrangian frame but it solve the fluid flow in a 
fixed Cartesian grid.  The main principle of an im-
mersed boundary method is to use a virtual force in the 
momentum equations for the effect of solids on fluids.  
Grids in an immersed boundary method do not need to 
be distorted to fit the complex boundary or the moving 
boundary.  Immersed boundary methods as reviewed by 
Sotiropoulos and Yang [11] have been considered as 
efficient numerical approaches for simulating complex 
fluid-structure interaction problems in the past two 
decades.  For VIV simulations, Yang and Stern [12] 
developed a direct-forcing immersed boundary method 
to simulate 2DOF VIVs of a circular cylinder.  Various 
trajectories of the cylinder were reported.  The direct- 
forcing approach was proposed by Mohd. Yusof [13].  
Du et al. [8] developed a three-dimensional immersed 
boundary model to predict 1DOF VIVs of a circular 
cylinder and observed vortex-shedding modes.  In this 
study, a direct-forcing immersed boundary method 
(DFIB) is adopted for simulations of VIVs above a plane 
boundary.  The DFIB methods was used for simulations 
of uniform flow past circular cylinders first [14].  DFIB 
simulation method has been preferred for its simplicity 
and robustness in resolving fluid structure interaction 
(FSI) situations.  The DFIB method relies on a fixed 
Cartesian mesh, quite distinct from the conventional 
body-fitted routine, which uses an adaptive meshing 
method.  The use of DFIB method eliminates the re-
quirement of mesh regeneration at each time step.  The 
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import of this is the tremendous reduction in design time, 
which means a better turnaround.  The novelty of the 
DFIB method, which is based on the momentum conser-
vation principle, is anchored on the idea of replacing the 
solid body with its equivalent momentum effect on the 
equations governing the fluid motion.  It has a great 
capability for handling complex geometries and moving 
bodies.  Subsequently, Chern et al. [15] used this DFIB 
method to present the oscillatory flow past four cylindri-
cal arrays.  Variations of vortices around cylinders were 
observed and the influences on hydrodynamic loadings 
were presented.  Moreover, Chern et al. [9] utilized the 
DFIB method to simulate the lock-in phenomena of 
2DOF VIV of a circular cylinder in a uniform flow.  
Responses and vortex-shedding modes were depicted 
successfully. 

In order to improve the problems mentioned above, 
the first explicit direct-forcing IB method was proposed 
by Uhlmann [16].  Uhlmann’s method was further 
developed by Kempe and Fröhlich [17].  In this paper, 
the satisfaction of the velocity boundary conditions was 
improved by iterations.  For the case of an implicit 
direct-forcing IB method, Wang and Zhang [18] devel-
oped a direct-forcing IB method based on the discrete 
stream function with local mesh refinement.  To ac-
commodate the interaction between a solid and a fluid 
flow, the body is identified by a volume-of solid function 
η which is reported by Noor et al. [14].  In order to fa-
cilitate the implementation of problems in complex flow 
simulations, the hybrid Cartesian-immersed boundary 
method was proposed by Mohd. Yusof [13], it is indi-
cated that the immersed boundary method based on 
curvilinear background grids.  Furthermore, Deng et al. 
[19] conducted the simulation of a flow pass stationary 
circular cylinder and a downstream elastic circular 
cylinder also use a hybrid Cartesian-immersed boundary 
method and have good agreement with other literatures. 

In the present study, numerical simulations of a freely 
vibrating cylinder adjacent to a plane boundary are un-
dertaken to investigate the effect of the boundary on VIV.  
When a circular cylinder is exposed to a flow field, pe-
riodic forces are exerted on the solid body when vortices 
shed behind the cylinder.  Vibration of the cylinder in 
the boundary layer flow is numerically predicted.  
Modes of vortex shedding are discussed.  Variation of 
shear stress distribution on the plane boundary is deter-
mined.  The influence of the vibrating cylinder on the 
variation is discussed. 

2.  MATHEMATICAL FORMULAE AND 
NUMERICAL METHODS 

We have proposed a numerical model which employs 
the direct-forcing immersed boundary (DFIB) method 
and the finite volume method in the present study.  A 
virtual force is considered in the incompressible Na- 
vier-Stokes equations to simulate the fluid-structure in-
teraction by the DFIB method.  The DFIB method has 
been successfully used in various fluid-structure interac-
tion (FSI) problems (see [9, 14-15]).  More details 
about the DFIB method are described as follows. 

 

Fig. 1 Problem description and boundary conditions 
for VIV of an elastically mounted circular cyl-
inder near a plane boundary. 

 

2.1  Governing Equations and DFIB Method 

A system of flow pass through an elastically mounted 
circular cylinder close to a plane boundary is illustrated 
in Fig. 1.  Vortex shedding behind the circular cylinder 
allows it to vibrate in two degree-of-freedom (2DOF).  
The free stream is parallel to a plane boundary in the 
present study.  In the present model, the distance be-
tween the inlet and the cylinder is enough to transform 
the free stream into a fully developed flow.  The dimen-
sionless governing equations of motion for an incom-
pressible fluid flow can be expressed as 

 0, u  (1) 

and 

 2 *1
( ) ,p

Ret


      

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uu u f  (2) 

where u and p are non-dimensional velocity and pressure, 
respectively.  u is non-dimensionalized by u∞ which is 
the inlet free stream velocity, and p is a 
non-dimensionless pressure  which is defined as 

2/( )p u
 , where p* is the dimensional pressure and ρ is 

density of the fluid.  Re is the Reynolds number defined 
by u∞D/v where D is the cylinder diameter, v is the ki- 
nematic viscosity of fluid, and f*

 is the dimensionless 
virtual force term.  In general, there are two different IB 
methods to handle complex geometries, one of them use 
a regular Eulerian computational grid for the fluid and a 
Lagrangian representation of the immersed boundary, 
which is first proposed by Peskin [20] (where the inter-
action between the fluid and the immersed elastic struc-
ture is expressed in terms of spreading and interpolation 
operations by use of smoothing Dirac delta functions), 
and the alternative IB method is the direct-forcing 
method proposed by Mohd. Yusof [13] and adopted in 
the present study.  The forcing term f*

 is defined as 
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and it can be defined by the difference between the in-
terpolated velocity on the boundary point and the desired 
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Fig. 2 Sub-grids use ξ to re-define the solid and fluid region: (a) volume-of-solid-function, (b) η contours without 
sub-grids, (c) η contours with sub-grids. 

 
 
 
solid velocity of cylinder center and the second interme-
diate velocity.  The solid body is identified by a vol-
ume-of-solid function, η, which denotes a fraction of 
solids within a cell where η is equal to 1 and 0 for solid 
and fluid cells, respectively, as reported by Noor et al. 
[14].  In order to implement a mesh refinement study in 
boundary cells, ξ is determined by Eq. (4) in each 
sub-grids.  Therefore, the solid/fluid interface more 
closely resembles to smooth curves owing to dividing the 
main cells by setting the number of N, so the hydrody-
namic coefficients can be resolved accurately.  For an 
example, the circular cylinder is considered in the com-
putational domain as shown in Fig. 2(a).  Given that the 
distance between the center of the cylinder and the center 
of a sub-grid is less than the radius of the cylinder, then ξ 
will be 1.  On the contrary, ξ is 0 when the distance is 
greater than radius. 

 
,

,
'

k l
i j

N N


 


  (4) 

where k, l are the updated cell indices upon the determi-
nation of ξk,l in each sub-cell by following Eq. (5); 
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where R is the radius of the cylinder, (x, y) are the coor-
dinates of the center of the grid cell under consideration, 
and (xc, yc) are the coordinates of the cylinder [14].  Fig. 
2(c) shows after the improvement, the solid boundary is 
smoother compared to the one before improvement 
showed in Fig. 2(b). 

2.2  Equations of Motion for Vibrating Rigid Body 

For the present VIV study, the moving structure is as-
sumed to be rigid and mounted on elastic bases that al-
low displacements in the in-line and transverse directions.  
The equation of a mass-damper spring system forced by 
the hydrodynamic loading can be utilized to describe 
such behavior of a vibrating structure.  According to the 
Newton’s second law of motion, the velocity and the 
position of the cylinder center need to be computed from 
the instantaneous hydrodynamic forces that exert on a 
solid body.  The motion of the solid body in the two 
dimensional Cartesian coordinate system is governed by 
the dimensionless equations as follows: 
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and 
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where Ẍ, Ẋ and X are the normalized in-line acceleration, 
velocity and displacement of the center of a circular cyl-
inder, respectively, while Ϋ, Ẏ and Y are in the transverse 

direction.  R
n
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, is the structural damping ratio.  
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The term 
2

4 s

f

m
m

D L
   
 

, is the mass ratio of solid to 

liquid mass while CD(t*) and CL(t*) are the instantaneous 
drag and lift force coefficients, respectively defined in 
Eqs. (11) and (12).  The fourth order Runge-Kutta algo-
rithm is employed to solve Eqs. (6) and (7) after instan-
taneous CD and CL are determined at each time step.  
The diameter of cylinder D is defined as the characteris-
tic length in the present work.  The structural stiffness 
and the structural damping are assumed to be an isotropic 
in the study of two-degree-of-freedom vibrations. 

2.3 Numerical Methods for Solving the  
Navier-Stokes Equations 

The DFIB method uses a simple Cartesian grid to 
handle complex geometry problem.  We employ the 
finite volume method in order to solve the Navier-Stokes 
equations in those grids.  Therefore, the spatial and tem- 
poral discretization using a number of numerical 
schemes are discussed as follows. 

Spatial and temporal discretizations: The second 
order central difference scheme and the third order 
quadratic upstream interpolation for convective kinetics 
(QUICK) scheme proposed by Leonard [21] are used to 
discretize the diffusive and the convective terms of 
Eq. (2) in this paper, respectively.  A staggered grid is 
used in the present work.  The Adam-Bashforth scheme 
is applied to the temporal terms.  This scheme can guar- 
antee the third order accuracy of time integral.  By solv- 
ing the advection-diffusion equations without the pres-
sure gradient and the virtual force term, the first interme-
diate velocity u′ is calculated and denoted as 

 1 2' [23 16 5 ],
12

n n n nt
S S S


 

   u u  (8) 

where S includes the diffusive and convective terms of 
Eq. (2) at each time step.  To predict the first intermedi-
ate velocity in Eq. (8), the third order Adam-Bashforth 
temporal scheme is implemented. 

We have followed the same procedure prediction- 
correction for pressure-velocity as Chern et al. [9] and 
Chern et al. [15] and solved the Poisson equation 

 2 1 1
',np

t


   


u  (9) 

by using the SOLA algorithm proposed by Hirt et al. [22].  
In present study, the integral of the virtual force is the 
dimensionless resultant force exerted on a circular cyl-
inder by using the Simpson’s 1/3 rule. 

 d ,V


 F f  (10) 

where F are the resultant of total dimensionless virtual 
forces.  The dimensionless in-line and transverse force 
coefficients, CD and CL can be denoted as 
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and 
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where Rx and Ry are the dimensional resultant drag and 
lift.  The time average of in-line and root-mean-square 
value of transverse forces in dimensionless form are de-
fined as 
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1
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respectively.  The skin-friction coefficient of a plane 
boundary is defined as 

 
2

,
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fC
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 
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Where w

du

dy
   

 
 is shear stress at the surface of a 

plane boundary, μ is dynamic viscosity.  The time aver-
age of skin-friction coefficient of a plane boundary and 
the integral of skin-friction coefficient are defined as 

 
0

1
d ,

T

f fC C t
T

   (16) 

and 

 
0

d ,
L

F fC C x   (17) 

where T is the time of the cylinder run in a cycle, L is the 
length of the plane boundary.  The skin-friction drag 
reduction in percentage can be presented as 

 
0

1 100%,F

F

C

C


 
   
 

 (18) 

where 
0FC  is the skin-friction drag of a plane boundary 

without a cylinder.  The higher γ indicates that the 
mechanisms of the drag reduction have a best perform- 
ance. 

2.4 Numerical Procedures for Fluid-Structure 
 Interaction 

Figure 3 shows the complete numerical procedures for 
fluid-structure interaction of the proposed DFIB method 
at each time step and it is summarized in the following 
algorithm. 

1. Identify the immersed boundary location and de-
termine the volume-of-solid function η at each cell. 

2. Compute the first intermediate velocity u by Eq.  
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Fig. 3  Flow chart of numerical procedures for each time step. 

 
 
(8) including the diffusive and convective terms. 

3. Reconstruct the pressure gradient by solving the 
Poisson equation associated with Eq. (9), then advance 
the intermediate velocity u″ by Eq. (8) in Chern et al. [9], 
to satisfy the mass conservation. 

4. Solve the virtual force in the entire domain by 
means of Eq. (15) in Chern et al. [9].  Thus, the total 
hydrodynamic force acting on the solid, the drag and lift 
coefficients can be obtained from the Eqs. (10), (11) and 
(12), respectively. 

5. Update flow field velocity un+1 using the calculated 
virtual force by Eq. (12) in Chern et al. [9]. 

6. Calculate the solid motion described in Eqs. (6) and 
(7) to get the velocity and displacement of solid.  If the 
solid is fixed, then us will be always zero. 

2.5  Computational Domain and Computing Time 

The computational domain of 60D × 20D for simula-
tions of a 2-DOF VIV problem where a circular cylinder 
adjacent to a rigid boundary, is discretized into I × J = 
445 × 223 non-uniform grids as presented in Fig. 4.  
The purpose of using a non-uniform grid configuration is 
to increase the accuracy of the present method and to 
enhance the capturing of the VIV phenomenon.  Ac- 

 

Fig. 4 The grid configurations for VIV of an elastically 
mounted circular cylinder adjacent to a plane 
boundary. 

 

 
cording to Chern et al. [9], DFIB modeling of VIV of a 
circular cylinder was completely certificated and has 
good result.  The minimum grid size of ∆x = ∆y = 0.025 
is employed in the vicinity of the vibrating cylinder.  A 
time increment of ∆t* = 10-3 satisfies the CFL condition.  

Herein, CFL number defined as 
u t v t

x y

     
, is always 

less than 0.1 in the present study.  The convergence 
criterion Ɗ = 10-4 for the maximum mass residual is con-
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sidered in this study.  The longest simulation takes 
about 50 days, corresponding with the dimensionless run 
time t* = 800.  A PC cluster consisting of Intel Xeon 
E5-2697 v2 2.70 GHz CPUs is used to model the motion 
of 2-DOF cylinders. 

2.6 Grid Independence and Validation of in-House 
 Numerical Code 

The numerical study of an uniform flow past a sta-
tionary cylinder using the current DFIB method at Re = 
40 and 100 was successfully performed by Noor et al. 
[14].  The time history of recirculation length at Re = 40, 

DC  and St of the cylinder at Re = 100 have good agree-

ment with other literatures in their results.  Chern et al. 
[15] and Chern et al. [9] used the same DFIB method in 
the numerical prediction of cylinder array in oscillatory 
flow and vortex-induced vibration of a circular cylinder.  
Several grid configurations are utilized to simulate the 
transverse oscillations of a circular cylinder in order to 
ensure that the numerical results are grid independent 
especially for free vibrations of a circular cylinder.  The 
flow and structural parameters are chosen according to 
Leontini et al. [23] using Re = 200, m* = 10, ζ = 0.01 and 

3.5RU    in grid independent study.  It is interesting to 

investigate the influence of the grid from the flow evolu-
tion since the proposed model is established for an un-
steady flow.  Based on the study of Chern et al. [9], 
there are four various corresponding smallest grid spac-
ing of these meshes (0.1D, 0.05D, 0.025D and 0.020D) 
allocated in the vicinity of the cylinder.  The time histo-
ries of the normalized transverse displacement given by 
∆x = ∆y = 0.025 and 0.02 are very similar and over-
lapped with each other.  The grid spacing ∆x = ∆y = 
0.025 in the vicinity of the vibrating cylinder is adopted 
in present work to get more accuracy numerical results 
and to save the computational time.  Herein, a total 
number of 1257 uniform grid cells are used to describe 
the vibrating cylinder. 

3.  RESULTS AND DISCUSSIONS 

3.1 In-Line and Transverse Vibrations near a 
 Plane Boundary 

The dynamic responses of VIV of a circular cylinder 
adjacent to a plane boundary are investigated numeri- 
cally in this simulation.  The elastically mounted circu-
lar cylinder can oscillate in both transverse and stream 
wise directions.  The parameters used in the present 
simulations are same as mentioned in the previous pub-

lished (see [9]), however, Re = 100 and RU   alters in an 

interval between 4 and 12.  The natural frequency of the 

structure is used to adjust the variation of RU  .  In order 

to obtain the maximum amplitude, the value taken for the 
term m* is 10 and ζ is set to 0.  Herein, four different 
values of gap ratio, e which is normalized by D, are con-
sidered, such as 0.35, 0.6, 0.8 and 1.25 to investigate the 
influences of boundary layer on the vibrating cylinder.   

 

Fig. 5 Illustration of a circular cylinder in the boundary 
layer. The cylinder is located at X = 30.  The 
gap ratios, e, 0.35, 0.6, 0.8 and 1.25, are consid-
ered in this study. 

 
 
The calculated thickness of the boundary layer δ at Re = 
100 is about 1.58D depending on free stream velocity, u∞, 
cylinder diameter D and kinetic viscosity of fluid, v.  In 
Fig. 5, the effect of boundary layer on different positions, 
e = 0.35, 0.6, 0.8 and 1.25 are illustrated.  We have 
taken care that the cylinder would not hit the rigid plane 
boundary due to the maximum amplitude in cases of e = 
0.35, 0.6, 0.8 and 1.25.  A parametric study is per-

formed to investigate the effects of RU   and e on the 

amplitude and frequency responses of the vibrating cyl-
inder. 

3.2  Flow Patterns and Modes of Vortex Shedding 

Figure 6 shows the time history of the normalized 
in-line and transverse displacements of the vibrating 
cylinder with e = 0.35, 0.6, 0.8, and 1.25.  The mono-
tonically periodic growing amplitude with e = 0.35, 0.6, 
0.8, and 1.25 could be observed after it reaches the peri-
odic state.  Figure 6 also shows that the oscillation am-
plitudes in the transverse direction are greater than the 
in-line direction with the effect of boundary layer.  
Bearman and Zdravkovich [24] and Lei et al. [25] ob-
served that the vortex shedding was suppressed at e ≤ 0.3.  
The vortex shedding is affected by the plane boundary 
and the phenomenon of vortex shedding from the sta-
tionary cylinder vanishes when e decreases to a certain 
value. 

The major vortex patterns near the fundamental 
lock-in region are 2S, 2P and P+S [26].  The designa-
tion 2S means that in each half cycle a vortex is fed into 
the downstream wake, 2P means the formation of vortex 
pairs which convect laterally outwards from the wake 
centerline, and the P+S mode is an asymmetric version 
of the 2P mode where the cylinder sheds a pair and a 
single vortex each cycle.  Other patterns are denoted as 
C(2S) and C(P+S) which mean that near the cylinder, we 
have the 2S or P+S modes but the smaller vortices coa-
lesce behind the solid body.  Initially, the 2S mode ap-
pears near the wake and as gradually Reynolds number 
increases, different wake patterns similar to 2P and P+S 
modes appears.  Plenty of results have been published 
previously for different flows involving an oscillating 
body and confirmed the similar wake patterns near the 
oscillating body. 
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Fig. 6 Time histories of the normalized in-line and transverse displacements of vibrating cylinder adjacent to a plane 
boundary for different gap ratios when lock-in occurs: (a) e = 0.35, (b) e = 0.6, (c) e = 0.8, and (d) e = 1.25. 

 

 

Fig. 7 Vortex shedding modes of vibrating cylinder adjacent to a plane boundary for different gap ratios: (a) e = 0.35, 
(b) e = 0.6, (c) e = 0.8, (d) e = 1.25, (e) RU   = 5.0 and RU   = 5.5, without a plane boundary. 
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Fig. 8 Trajectory diagrams of the movement of vibrating cylinder adjacent to a plane boundary for different gap ratios: 
(a) e = 0.35, (b) e = 0.6, (c) e = 0.8, and (d) e = 1.25. 

 
 

Figure 7 presents the flow visualization of wake flow 
around a two-degree-of-freedom circular cylinder with 
(a) e = 0.35, (b) e = 0.6, (c) e = 0.8, (d) e = 1.25 and 

(e) 5.0RU   , 5.5RU   , without a plane boundary 

where vortex shedding modes C(2S) and 2S are observed 
respectively.  According to Williamson and Roshko 
[26], the 2S means that two single vortices are formed in 
each cycle and released from the cylinder.  Moreover, 
C(2S) is similar to a 2S mode but vortices are coalesced 
in the wake behind the solid body.  As shown in the 
figure, the vortices are shedding only from the top of the 
cylinder and the single clockwise vortex street dominates 

the wake process.  Figures 7(a) 4.0RU   , (b) 4.0RU    

and (c) 4.5RU    presents that the separation occurs on 

the cylinder initially, but the size of the separation bubble 
is very small and it coalesces together due to the weak 
aerodynamic forces.  In Fig. 7(d), clockwise vortex is 
stronger than Figs. 7 (a)-(c) because the cylinder is far-
ther away from the plane boundary when e = 1.25, it is 
noted that single clockwise vortex shedding over the 

cylinder is found when 4.0RU   .  When it comes to 

the case without the effect of boundary layer which is 
studied by Chern et al. [9], the flow induced 
two-degree-of-freedom vibration of a circular cylinder in 
the uniform flow without a plane boundary at Re = 100, 
m* = 10 and ζ = 0 was investigated.  Results show that  
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Fig. 9 Variation of values of maximum in-line and transverse displacements of vibrating cylinder with a variety of 
gap ratios and reduced velocities. 

 
 

the C(2S) mode is discovered from 4.5RU    to 5.0 

except for 2S mode.  5.0RU    has C(2S) mode in Fig. 

7(e) which is similar to 2S mode but vortices coalesce in 

the wake behind the solid body.  When 5.5RU   , it 

back to the 2S mode in the flow pattern, two single vor-
tices are formed in each cycle and released from the cyl-
inder.  In the above-mentioned, vortex shedding is sup-
pressed given that the cylinder adjacent to a plane 
boundary leads to the disappearance of vortex under the 
cylinder.  With the influence of a plane boundary, the 
mode of vortex shedding behind cylinder is apparently 
different from that in uniform flow [9].  In summarize, 
this bigger separation bubble from the cylinder is strong 

enough to damage the shear layer of boundary as RU   

ascends.  Current wake patterns are consistent with the 
numerical investigations of the vortex shedding modes 
by Zhao and Cheng [10]. 

Figure 8 shows the trajectory diagrams of the move-
ment of cylinder with the effect of the plane boundary.  
The movement of the cylinder is obviously different 

from that in uniform flow [9].  When RU   ranges from 

5.5 to 7.0, the eight-shaped motion does not occur.  The 
current movement of a cylinder is in an oval-shaped mo-
tion but nearly round because of the increasing oscilla-
tion amplitudes in the in-line direction.  The single 
clockwise vortex street behind cylinder causes the 
clockwise periodic orbit of the movement of cylinder.  
The results mentioned above agrees with the experiment- 
tal data of the effect on the plane boundary by Tsahalis 
[27].  Furthermore, it is noticed that the movement of 

cylinder is deflected with an angle as RU   increases for 

e = 0.6 but somehow it reverses the principle axis direc-

tion at 8.5RU   .  Similarly, this deflected and reverse 

phenomenon also exist for e = 0.8 but it occurs earlier 
than e = 0.6.  The same phenomenon can also be ob-
served when e = 1.25.  Except for the case with small 

gap ratio, this phenomenon seems to occur earlier as the 
gap ratio increases.  Unlike the other case mentioned 
above, the case with e = 0.35 did not reverse the princi-

ple axis direction at any RU  .  The possible reason for 

this phenomenon is that the vortex shedding was sup-
pressed at e ≤ 0.3 [24, 25]. 

3.3 Effects of Reduced Velocity and Gap Ratio on 
 the Cylinder Response 

Variations of Xmax and Ymax of a vibrating cylinder with 

respect to e and RU   are shown in Fig. 9.  According to 

the amplitude response, it indicates that the jump behav-
ior is found in the high end of the lock-in region.  The 
figure also shows that there are distinct difference among 
all of the cases of e.  For e = 0.35, the maximum ampli-
tude in the in-line and the transverse direction is around 

0.091D and 0.24D respectively at 11.5RU    Whereas 

for e = 0.6, the peak variation amplitude in the in-line 
and the transverse direction is around 0.0825D and 

0.47D respectively at 8.1RU    Similarly, e = 0.8, the 

peak variation amplitude in the in-line and the transverse 
direction is around almost 0.08D and 0.50D respectively 

at 6.7RU   .  And, for e = 1.25, the maximum ampli-

tude in the in-line and the transverse direction is around 

0.057D and 0.55D respectively at 5.4RU   .  The 

maximum in-line oscillation amplitudes decrease gradu-
ally as e increases with the effect of a plane boundary.  
On the other hand, it is noted that the peak amplitude in 
the transverse direction increase gradually with increas-
ing e due to the reducing effect of the boundary layer.  
Present study indicates that the vibration amplitudes in 
both directions grow upward and attain the peak ampli-

tude slowly as RU   ascends, and descends quickly after 

critical values of RU   when the effect of boundary be- 
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Fig. 10 Variation of the frequency ratio with different gap ratios and reduced velocities. The Strouhal number proposed 
by Williamson and Roshko [26] is defined by St = 0.212(1 − 21.2/Re). 

 
 

 

Fig. 11 Variation of the mean drag and r.m.s. values of lift coefficients of the vibrating cylinder with a variety of gap 
ratios and reduced velocities. 

 
 
comes greater.  The results are similar to the experi-
mental investigation by Yang et al. [5].  Figure 10 re-
veals the corresponding frequency ratio between the 
vortex shedding and natural vibration frequencies for e = 
0.35, 0.6, 0.8 and 1.25.  The lock-in region is com-
pletely different in comparison with the Chern et al. [9] 
without the effect of the plane boundary (see Fig. 10).  

The ranges of RU   for lock-in region when e = 0.35, 0.6, 

0.8 and 1.25 are about 4.5 ≤ RU   ≤ 11, 4.5 ≤ RU   ≤ 8.1, 

4.5 ≤ RU   ≤ 7.5 and 4.5 ≤ RU   ≤ 6.7, respectively.  

The cylinder exhibits larger oscillation amplitudes and 
high aerodynamic forces within the lock-in region.  
Figure 10 shows that the frequency ratios are 0.88, 0.91, 
0.93 and 0.95 for e = 0.35, 0.6, 0.8 and 1.25, respectively.  
The frequency ratio slightly decreases as the gap ratio 
decreases.  The reason for the vortex shedding fre-
quency does not match with the natural frequency of 

structure in the lock-in region could be that the only sin-
gle vortex is shedding behind the cylinder.  Although 

the range of RU   of lock-in region for e = 0.35, 0.6, 0.8 

and 1.25 and without the boundary effect are different, it 
is found that the length of interval of lock-in region are 
almost same. 

Figure 11 shows the variation of DC  and CL,rms of a 

vibrating cylinder with respect to e and increasing RU  .  

The results also shows the jump behavior at the high end 
of the lock-in region.  Moreover, the behavior of CL is 
related to the mode of vortex shedding, and it can be 
clearly seen for the variation of e.  Although, the 
time-averaged coefficient oscillates about zero in a peri-
odic manner.  However, the calculated time-averaged 
drag and root-mean-square lift coefficient results, com-
pared to a stationary cylinder at Re = 100, DC  and 

CL,rms for out of the lock-in region are nearly 1.30 and 
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Fig. 12  The skin-friction drag on the spatial distribution of a plane boundary. 

 
 
 

 

Fig. 13  The skin-friction drag reduction varies with the reduced velocity in various gap ratios. 
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0.20 for e = 0.35 and for without the plane boundary, 
whereas, for e = 0.6 and 0.8 is nearly 1.80 and 0.10 re-
spectively.  Furthermore, it is found that beyond the 
lock-in region, the cylinder exhibits a small oscillation 
amplitude.  Meanwhile, in the lock-in region, the cyl-
inder experiences a large amplitude oscillation and high 
aerodynamic forces. 

3.4  Skin-Friction Drag Reduction 

Figure 12 shows that the mechanism of VIV disturbs 
the viscous flow on a plane boundary and the total 
skin-friction drag is decreased because of vortex shed-
ding.  Although the local skin-friction drag around the 
cylinder obviously increase, but the total skin-friction 
drag, the area under the local skin-friction drag curve, 
decrease before and behind the cylinder.  In summary, 
the total skin-friction drag on a plane boundary is lower 
than the case without the cylinder.  As shown in 
Figs. 13(b)-(d), the cylinder orbits, the oval-shaped mo-
tion in the lock-in region, γ has significant variation 
around at peak amplitude of vibrations except for e = 
0.35 in Fig. 13(a).  The possible reason is that the effect 
of boundary on cylinder is stronger when e decreases.  
Amplitude of transverse vibrations was suppressed 
which is difficult to disturb the shear layer behind a cyl-
inder.  On the other hand, it seems to be static circular 

cylinder, so that,  do not change with RU   outside the 

lock-in region. 

4.  CONCLUSIONS 

Two-degree-of-freedom vortex-induced vibration 
(VIV) of an elastically mounted circular cylinder close to 
a plane boundary is simulated numerically by using the 
direct-forcing immersed boundary (DFIB) method. 

For two-degree-of-freedom VIV of the cylinder with-
out the boundary effect, the peak oscillation amplitudes 
in both directions appear on the onset of lock-in/syn- 
chronization region.  It is found that the amplitude re-
sponse in the transverse direction is significantly higher 
than those of the in-line directions.  The improvements 
of skin-friction drag are closely related to the modulation 
of surface flow, which is caused by the vibration induced 
velocity fluctuated on the boundary layer.  While the 
effect of boundary layer is considered into two-degree- 
of-freedom VIV, the peak vibration amplitudes in the 
in-line and transverse directions as compared with the 
effect of a plane boundary are increased and decreased, 
respectively.  From the initial amplitude response, the 
vibration amplitudes in both directions grow upward and 

reach the peak amplitude slowly as RU   ascends and in 

the final stage, it descends immediately.  It leads to the 
result that the jump behavior is found at the high end of 
the lock-in region.  With the effect of plane boundary, 
the wake structure analysis exhibits that the single 
clockwise vortex shedding dominates the wake process 
rather than the 2S and the C(2S) modes.  In the lock-in 
region, the cylinder moves with a nearly round oval- 

shaped motion rather than the slightly oval-shaped mo-
tion due to the increasing oscillation amplitudes in the 
in-line direction.  When the cylinder moves toward the 
plane boundary, the movement of cylinder shows that it 
leads to an inclined movement in the opposite direction.  
When it comes to the frequency response, the vortex 
shedding frequency does not match with the natural fre-
quency of structure in the lock-in region since that only 
the single clockwise vortex shedding is found behind the 
cylinder.  On the other hand, it also indicates that the 
frequency ratio of the lock-in region would rise when the 
cylinder is farther away from a plane boundary.  The 
skin-friction drag of the surface was measured where a 
cylinder adjacent to a plane boundary.  In the case of a 
cylinder placed adjacent to a plane boundary, vortex 
shedding appears behind the cylinder when the flow past 
it.  Results show that this mechanism of VIV can 
achieve the effect of drag reduction by controlling 
boundary layer flow. 
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NOMENCLATURE 

English Symbols 
c structural damping, N.s.m-1; 

DC  dimensionless time average in-line force coeffi-

cient; 
CL,rms dimensionless root-mean-square transverse 

force coefficient; 

fC  dimensionless time average skin-friction coeffi-

cient; 

FC  dimensionless skin-friction drag coefficient; 

0FC  dimensionless skin-friction drag of a plane 

boundary without cylinder; 
D diameter of cylinder, m; 
e gap width between the plane boundary and the 

cylinder, m; 
Ɗ convergence criterion; 
f* dimensionless virtual force per unit mass; 
fn natural frequency of structure, s-1; 
fv frequency of vortex shedding, s-1; 
Rx dimensional resultant drag; 
Ry dimensional resultant lift; 

nf
  dimensionless natural frequency of structure; 

vf
  dimensionless frequency of vortex shedding; 

F total dimensionless virtual force; 
I,J numbers of grid points in the x- and 

y-directions; 
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k structural stiffness, N.m-1; 
L length of plane boundary, m; 
m* dimensionless mass ratio; 
ms structural mass of solid, kg; 
p dimensionless pressure; 
Re Reynolds number, u∞D/v; 
St Strouhal number, fvD/u∞; 
t time, s; 
t* dimensionless time, tu∞/D; 
T dimensionless time of the cylinder run in a cy-

cle; 
τw shear stress at the surface of a plane boundary, 

du
u

dy
; 

u dimensionless velocity of fluid; 
u dimensionless first intermediate velocity; 
u″ dimensionless second intermediate velocity; 
us dimensionless velocity of solid; 
u∞ free stream velocity, m.s-1; 

RU   dimensionless reduced velocity, u∞/(fnD); 

x,y horizontal and vertical Cartesian coordinates; 
X,Y dimensionless displacements in the in-line and 

the transverse direction; 
Greek Symbols 
γ dimensionless skin-friction drag reduction; 
δ thickness of the boundary layer, m; 
ζ dimensionless damping ratio of structure; 
η fraction of volume of solid in a cell; 
μ dynamic viscosity of fluid, N.s.m-2; 
v kinematic viscosity of fluid, m2.s-1;  
ξ refinement of sub-grids; 
ρ density, kg·m-3; 
Ω domain; 
Subscripts 
f fluid; 
s solid; 
rms root-mean-square 
i, j, k, l numerical cell indices 
Superscripts 
n time step level; 
* dimensionless parameter; 
 first intermediate time step level; 
″ second intermediate time step level; 
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