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a b s t r a c t

A numerical study of the vortex-induced vibration (VIV) of a flexible supported circular cylinder using the
direct-forcing immersed boundary (DFIB) method incorporating the virtual force term is investigated. The
use of DFIB method eliminates the requirement of mesh regeneration at each time step, owing to the
movement of the cylinder, a practice which is common with body-fitted grid setups. The fluctuating
hydrodynamic forces may cause the vibration of the structure due to vortex shedding behind it. In reality,
this vibration phenomenon may result in the failure of the structure especially for the so-called lock-in/
synchronization phenomenon. The present study shows that a dynamically mounted circular cylinder is
allowed to vibrate transversely only or both in the in-line and the transverse directions in a uniform flow
at a moderate Reynolds number. The effects of reduced velocity and gap ratio on VIV are discussed.
Hydrodynamic coefficients of a freely vibrating cylinder are analyzed in time and spectral domains. The
cylinder orbits the slightly oval-shaped and eight-shaped motions in the lock-in regime. Moreover, the 2S
and the C(2S) vortex shedding modes can be found at the low amplitude vibration and the large amplitude
vibration, respectively. The comparisons against the published data prove the capability of the present
DFIB model. This proposed model can be useful for the investigation of VIV of the structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vortex-induced vibration (VIV) of a structure has become an
important issue in many engineering areas, such as aerospace
engineering, civil engineering, wind engineering, and ocean engi-
neering. For aerospace engineering, an airfoil subject to the
fluttering would be damaged due to the large amplitude vibra-
tions. In the civil engineering and the wind engineering, it may
cause galloping of bridges and chimneys due to the interaction
with current and wind, respectively. For an offshore application,
such as submerged pipelines on a seabed may vibrate acutely due
to ocean currents. It results in the damage of flexible risers in
petroleum production.

VIV has been regarded as one of the dominating causes for the
fatigue failure to the structures. However, this phenomenon could
be very useful in renewable energy as well. The kinetic energy of
the vibrating structure, which comes from the flow, can be

converted to usable electric energy given that a proper power
take-off (PTO) mechanism is designed to link the structure and the
power generator. Recently, Bernitsas et al. (2008) developed a
VIVACE (Vortex-induced vibrations for aquatic clean energy)
machine that can harvest energy from most of the water currents
around a vibrating structure. Actually, VIV problems are always
complicated and exit in situations such as inclined and free shear
flows, the effects of turbulence and rigid plane boundary, regular
or irregular wave, and so on. To further realize VIV phenomena,
the prediction of the amplitude and frequency responses of a
vibrating circular cylinder is necessary.

It is well known that VIV exists under the action of unsteady
hydrodynamic forces arising from alternative vortex shedding
behind a solid body immersed in fluid flow. As vortices shed, the
periodic forces exert on the solid body in a flow field. Considering
an elastically mounted circular cylinder, the periodic forces lead to
the movement of the cylinder. Under certain conditions, the vortex-
shedding frequency is close to its natural frequency and then self-
excited vibrations would be induced. This phenomenon is referred
as lock-in/synchronization which may cause the failure of the
structure, especially for the resonance case. The practical signifi-
cance of VIV has led to a large number of fundamental studies.
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Many of them are discussed in comprehensive reviews of the
investigations on various aspects of VIV such as Sarpkaya (1979),
Bearman (1984), Parkinson (1989) and Williamson and Govardhan
(2004). Some literatures claim that a combined mass-damping
parameter (mnζ) controls the cylinder responses of the VIV system.
Herein, mn is the ratio of the structure mass to fluid mass and ζ is
the structural damping. Feng (1968) conducted a well-known
experiment on cross-flow vibration of a flexibly mounted circular
cylinder in air flow with high mnζ. In his study, it demonstrates a
typical lock-in phenomenon and the occurrence of resonance of the
cylinder over a range of reduced velocity Un

R. Two amplitude
response branches such as the initial and the lower branches exist
given that mnζ is high as explained by Khalak and Williamson
(1996) and Govardhan and Williamson (2000). Brika and Laneville
(1993) studied cases of aeroelastics for a slender cylinder with low
mnζ in a wind tunnel. In terms of their flow visualization results, it
turns out that the initial branch of the hysteresis loop is associated
with the 2S (two single vortices released per cycle) mode and the
lower branch with the 2P (two vortex pairs shed per cycle) mode.
The experimental studies involving the transverse vibration of an
elastically mounted circular cylinder with extraordinarily low mnζ
in a water channel was undertaken by Khalak and Williamson
(1996, 1997a,b, 1999).For low mnζ, three response modes, initial,
upper, and lower modes, were reported. They indicated that the
transition between the initial and upper response branches involves
a hysteresis. This contrasts with the intermittent switching of
modes for the transition between the upper and lower branches.
In the upper branch, it is also found that the 2P mode exists but the
resonant amplitude is distinctly higher than other two branches.
Guilmineau and Queutey (2004) reported numerical simulations for
the transverse vibration of a flexibly mounted circular cylinder with
low mnζ in turbulent flow. In their study, three initial conditions
were considered: rest, increasing velocity, and decreasing velocity.
It is showed that the simulations predict only the lower branch
under rest and decreasing velocity. On the other hand, with the

increasing velocity condition, the upper branch is predicted. Blevins
and Coughran (2009) conducted experimental investigations in one
and two dimensional VIV of an aeroelastic circular cylinder with
various mn and ζ in turbulent water flow.They pointed out that the
in-line frequency is approximately twice the transverse frequency
and the two-degree-of-freedom cylinder orbits an eight-shaped
motion.

The advantages for predicting physical phenomena in advance
and reducing the cost have been generally accepted in computa-
tional fluid dynamics (CFD). The immersed boundary (IB) method is
a novel numerical methodology for the simulation of fluid–struc-
ture interaction problems due to its capability to handle simulations
for a moving boundary with less computational cost and memory
requirements than the conventional body-fitted method since it
was introduced by Peskin (1972). The IB method includes a virtual
force in the Navier–Stokes equations to express the effect of fluid–
structure interaction. An alternative IB method named the direct-
forcing method was introduced by Mohd. Yusof (1996). Instead of
using a velocity interpolation to distribute the force from a
Lagrangian grid to an Eulerian grid, Noor et al. (2009) used the
so-called volume of solid function to link the force in the fluid–
structure interaction. It does not require re-meshing for moving
body problems at each time step since it uses the Cartesian grids.
The idea of the direct-forcing immersed boundary (DFIB) method
has been adopted and obtained successful applications. Wang et al.
(2008) conducted a multi-DFIB method for the modeling of the
hitting and rebounding process of the single particle sedimentation
and the sedimentation of multi-particles. Their quantitative com-
parisons against other studies of the flows laden with moving
particles validated their model. Luo et al. (2012) developed a hybrid
formulation using an IB method which represents for the associa-
tion between the solid body surface and the local flow reconstruc-
tion to the validations including two- and three-dimensional,
stationary, and moving boundaries. This approach can suppress
the force oscillations and computational cost for the numerical

Nomenclature

English Symbols

A dimensionless amplitude
c structural damping, N s m�1

dx, dy displacements in the in-line and the transverse
directions, m

D diameter of cylinder, m
fn dimensionless virtual force per unit mass
fn natural frequency of structure, s�1

fv frequency of vortex shedding, s�1

f nn dimensionless natural frequency of structure
f nv dimensionless frequency of vortex shedding
F total dimensionless virtual force
I, J numbers of grid points in the x- and y-directions
k structural stiffness, N m�1

L axial length of structure, m
mn dimensionless mass ratio
ms structural mass of solid, kg
p dimensionless pressure
Re Reynolds number, u1D=ν
St Strouhal number, f vD=u1
t time, s
tn dimensionless time
u dimensionless velocity of fluid
u0 dimensionless first intermediate velocity
u″ dimensionless second intermediate velocity

us dimensionless velocity of solid
u1 free stream velocity, m s�1

Un

R dimensionless reduced velocity
x, y horizontal and vertical cartesian coordinates
X, Y dimensionless displacements in the in-line and the

transverse directions

Greek Symbols

η dimensionless fraction of volume cells
ν kinematic viscosity of fluid, m2 s�1

ρ density, kg m�3

ζ dimensionless damping ratio of structure
D convergence criterion

Subscripts

f fluid
s solid

Superscripts

n time step level
n dimensionless parameter
0 first intermediate time step level
″ second intermediate time step level
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oscillation occurring in the moving boundary problems. Lee and
You (2013) studied an IB method based on a ghost-cell method
coupled with a mass source/sink algorithm for reducing spurious
force oscillations in moving body problems. They found that the
magnitude of spurious force oscillations is proportional to the grid
spacing and is inversely proportional to the time increment.
Sotiropoulos and Yang (2014) reviewed a variety of immersed
boundary methods and reported recent results from the application
of immersed boundary methods. Various fluid–structure interaction
problems such as vortex induced vibrations, aquatic swimming, and
so on, which were solved by immersed boundary methods were
shown and explained in their review article.

The present numerical method involving a combined DFIB
method with a volume of solid function is established. It is used
to predict the flow characteristics of the dynamic responses of VIV
for an elastically mounted circular cylinder in a uniform flow. The
flow characteristics are analyzed using the variation of the max-
imum displacement of cylinder center and the fluctuating hydro-
dynamic coefficients. Also, the vortex shedding modes, frequency
responses and the trajectory diagrams are predicted. Simulations
of a freely vibrating circular cylinder in the in-line and the
transverse directions under a uniform flow at moderate Re are
carried out.

2. Mathematical formulae and numerical methods

In this study, the direct-forcing immersed boundary (DFIB) and
the finite volume method are utilized to establish the proposed
numerical model. The DFIB method adds a virtual force in the
incompressible Navier–Stokes equations to simulate the fluid–
structure interaction. The DFIB method has been applied to various
problems of fluid–structure interaction successfully (see Noor
et al., 2009; Chern et al., 2012, 2013). More details about the DFIB
method are described in the following.

2.1. Governing equations and direct-forcing immersed boundary
method

Flow past an elastically mounted circular cylinder is illustrated
in Fig. 1. The circular cylinder vibrates in two-degree-of-freedom
due to vortex shedding behind it. The free stream in the present
study is parallel to the plane boundary. The distance between the
inlet and the cylinder in the present model is enough to transform
the free stream into a fully developed flow. The non-dimensional
continuity and momentum equations governing incompressible
fluid flow are expressed as

∇ � u¼ 0 ð1Þ
and

∂u
∂tn

þ∇ � ðuuÞ ¼ �∇pþ 1
Re

∇2uþfn ð2Þ

where u and p are non-dimensional velocity and pressure,
respectively. u is nondimensionalized by u1 which is the inlet
free stream velocity and used as the characteristic velocity. Re is
the Reynolds number given by u1D=ν where D is the cylinder
diameter, ν is the kinematic viscosity of fluid, and fn is the
dimensionless virtual force term. In general, there are two differ-
ent IB methods to handle complex geometries. One of the IB
methods is to use a regular Eulerian computational grid for the
fluid and a Lagrangian representation of the immersed boundary.
This IB method was first proposed by Peskin (1972). The interac-
tion between the fluid and the immersed elastic structure is
expressed in terms of spreading and interpolation operations by
use of smoothing Dirac delta functions. The alternative IB method

is the direct-forcing method proposed by Mohd. Yusof (1996) and
adopted in the present study. The forcing term fn is determined by
the difference between the interpolated velocity on the boundary
point and the desired boundary velocity. It is determined by

fn ¼ η
us�u″
Δt

: ð3Þ

Herein, us and u″ are denoted as the solid velocity of cylinder
center and the second intermediate velocity. The solid body is
identified by a volume-of-solid function, η. It denotes a fraction of
solids within a cell where η is equal to 1 and 0 for solid and fluid
cells, respectively, and be fractional in boundary cells. Never-
theless, η is either 1 or 0 only and the fractional value is ignored
in this study. For example, the circular cylinder is considered in the
computational domain. The term η is 1 if the distance between the
center of the cylinder and the center of a cell is less than the radius
of the cylinder. Otherwise, η is 0 given that the distance is greater
than the radius of the cylinder.

2.2. The equations of motion for a vibrating rigid body

For the VIV problems considered in this study, the moving
structure is assumed to be rigid and mounted on elastic bases that
allow displacements in the in-line and transverse directions. Such
behavior of a vibrating structure can be described by the equation
of a mass–damper–spring system forced by the hydrodynamic
loading. The velocity and the position of the cylinder center have
to be computed from the instantaneous hydrodynamic forces that
exert on a solid body according to the Newton's second law of
motion. The motion of the solid body in the two dimensional
Cartesian coordinate system is governed by the following dimen-
sionless equations:

€Xþ4πζ
Un

R

_Xþ 2π
Un

R

� �2

X ¼ 2CDðtnÞ
πmn

ð4Þ

Fig. 1. Problem description and boundary conditions for VIV of an elastically
mounted circular cylinder: (a) transverse vibration and (b) in-line and transverse
vibrations.
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and

€Y þ4πζ
Un

R

_Y þ 2π
Un

R

� �2

Y ¼ 2CLðtnÞ
πmn

ð5Þ

where €X , _X and X are the normalized in-line acceleration, velocity
and displacement of the center of a circular cylinder, respectively,
while €Y , _Y and Y are the same quantities in the transverse
direction. Un

R is the reduced velocity of the system. The term ζ is
the structural damping ratio. The termmn is the mass ratio of solid
to liquid mass while CDðtnÞ and CLðtnÞ are the instantaneous drag
and lift coefficients, respectively. After instantaneous CD and CL are
determined at each time step, the fourth-order Runge–Kutta
algorithm is employed to solve Eqs. (4) and (5). The dimensionless
group associated with Eqs. (4) and (5) can be found in Table 1. In
the present work, the diameter of cylinder D is used as the
characteristic length. In the study of two-degree-of-freedom
vibrations, the structural stiffness and the structural damping are
assumed to be isotropic.

2.3. Numerical methods for solving the Navier–Stokes equations

The DFIB method can handle complex geometry problem using
a simple Cartesian grid. The finite volume method is applied to
solving the Navier–Stokes equations in those grids. Therefore, the
spatial and temporal discretizations using a number of numerical
schemes are discussed in the following.

2.3.1. Spatial and temporal discretizations
In this paper, the diffusive and the convective terms of Eq. (2)

are discretized using the second-order central difference scheme
and the third-order quadratic upstream interpolation for convec-
tive kinetics (QUICK) scheme proposed by Leonard (1979), respec-
tively. A staggered grid is used in the present work. For the
temporal terms, the Adam–Bashforth scheme is applied. This
scheme can ensure the third-order accuracy of time integral. The
first intermediate velocity u0 is calculated first by solving the
advection–diffusion equations without the pressure gradient and
virtual force term

u0 ¼ unþΔtn

12
½23Sn�16Sn�1þ5Sn�2� ð6Þ

where S includes the diffusive and convective terms of Eq. (2) at
each time step. The third-order Adam–Bashforth temporal scheme
is implemented to predict the first intermediate velocity in Eq. (6).

2.3.2. Prediction–correction for pressure–velocity
In general, the first intermediate velocity in Eq. (6) does not

satisfy the continuity equation. At the second step the first
intermediate velocity is advanced by including the pressure term

u″¼ u0 �Δtn∇pnþ1 ð7Þ

Taking the divergence for both sides of Eq. (7) gives

∇ � u″¼∇ � u0 �Δtn∇2pnþ1: ð8Þ

Subsequently, the second intermediate velocity u″ would satisfy
the mass conservation

∇ � u″¼ 0: ð9Þ

Substitution of Eq. (9) into Eq. (8) gives the Poisson equation of
pressure

∇2pnþ1 ¼ 1
∇tn

∇ � u0: ð10Þ

At the second step, the second intermediate velocity u″ in Eq. (7)
can be determined after solving the Poisson equation in Eq. (10) by
the SOLA algorithm proposed by Hirt et al. (1975). This scheme
uses an iterative method on the pressure field to conserve the
continuity equation. At each time step, pressure at each cell is
updated iteratively by adjusting the tentative velocities to satisfy a
required tolerance.

Finally, the virtual force term representing the effect of a solid
body on fluid should be included at the third step, so the final
velocity unþ1 can be obtained by imposing the virtual force term
as follows:

unþ1 ¼ u″þΔtnfnnþ1: ð11Þ

The dimensionless virtual force fnnþ1 reveals the existence of a
force to hold or drive a solid body when it is stationary or moving.
It can be defined from the rate of momentum changes of a solid
body and proportional to the difference between the solid velocity
at the (nþ1)th time step and the local fluid velocity at the (n)th
time step. To satisfy the no-slip boundary condition at the fluid–
solid interface, it should be ensured that the fluid velocity unþ1 is
equal to the solid velocity unþ1

s . The force exits on the solid body
and zero elsewhere. Furthermore, it can be simply written as

fnnþ1 ¼ η
unþ1�u″

Δtn
¼ η

unþ1
s �u″
Δtn

: ð12Þ

On account of the free oscillations of a circular cylinder, the solid
velocity us can be obtained from Eqs. (4) and (5), respectively.

In this study, the integral of the virtual force is the dimension-
less resultant force exerted on a circular cylinder by using the
Simpson's 1/3 rule.

F¼
Z Z Z

Ω
fn dV ; ð13Þ

where F are the resultant of total dimensionless virtual forces. The
dimensionless in-line and transverse force coefficients, CD and CL
can be denoted as

CD ¼ �2Fx ð14Þ

and

CL ¼ �2Fy ð15Þ

respectively. The time average of in-line and root-mean-square
value of transverse forces in dimensionless form are defined as

CD ¼ 1
t

Z t

0
CD dt ð16Þ

Table 1
Non-dimensional groups.

Time tn tu1
D

In-line displacement X dx
D

Transverse displacement Y dy
D

Mass ratio mn 4ms

πρf D
2L

Reduced velocity Un

R
u1
f nD

Structural damping ratio ζ c

2
ffiffiffiffiffiffiffiffiffi
msk

p
Reduced natural frequency f nn f nD

u1

Herein, u1 is free stream velocity. The terms dx and dy are the displacements of
cylinder center in the x- and y-directions. Relevant structural parameters are solid
mass ms, structural damping c and structural stiffness k. The term fn is the natural
frequency of the structure and L is the axial length of the structure.
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and

CL;rms ¼
1
t

Z t

0
C2
L dt

� �1=2

ð17Þ

respectively.

2.4. Procedures for fluid–structure interaction

The complete numerical procedures for each time step of the
proposed DFIB method are summarized in the following algorithm.

1. Identify the immersed boundary location and determine the
volume-of-solid function η at each cell.

2. Compute the first intermediate velocity u0 by Eq. (6) including
the diffusive and convective terms.

3. Reconstruct the pressure gradient by solving the Poisson
equation associated with Eq. (10), then advance the intermedi-
ate velocity u″ by Eq. (7) to satisfy the mass conservation.

4. Solve the virtual force in the entire domain by means of
Eq. (12). Thus, the total hydrodynamic force acting on the solid,
the drag and lift coefficients can be obtained from Eqs. (13),
(14) and (15), respectively.

5. Update flow field velocity unþ1 using the calculated virtual
force by Eq. (11).

6. Calculate the solid motion described in Eqs. (4) and (5) to get
the velocity and displacement of solid. If the solid is fixed, then
us will be always zero.

2.5. Computational domain and computing time

The computational domain of 40D� 22D for simulations of
1-DOF and 2-DOF VIV problems is discretized into I � J ¼ 239�
169 non-uniform grids while 60D� 20D for modeling of a 2-DOF
vibrating circular cylinder close to a rigid boundary problem is
discretized into I � J ¼ 445� 197 non-uniform grids. The computa-
tional domain is considered as Cartesian grids. The grid spacing at the
ith node is given by the expression proposed by Kuyper et al. (1993)

xi ¼
i

imax
�k
θ

sin
iθ
imax

� �
ð18Þ

Herein, θ¼ 2π stretches both ends of the domain whereas θ¼ π
clusters more grid points near one end of the domain. The term
k varies between 0 and 1. When it approaches 1 more points fall near
the end. For the vicinity of the cylinder, the grid space is uniform.
More details about the grid configuration and computational domain
are presented in Fig. 2. In the beginning of simulations, the region of

the cylinder oscillation is predicted in about 1.2D and 2D in the in-
line and transverse directions, respectively.

The purpose using a non-uniform grid configuration is to
increase the accuracy of the present method and to accurately
capture the VIV phenomenon. When free oscillations are consid-
ered, since an explicit scheme is used to treat the unsteady
problems, in order to avoid instability, the time increment is set
as Δtn ¼ 10�3 to satisfy the Courant–Friedrichs–Lewy (CFL) num-
ber. Herein, the CFL number is always less than 0.1 in the present
study. Also, the mass convergence criterion at each time step is set
as D¼ 10�4. The longest simulation takes at least 20 days to reach
the dimensionless time tn ¼ 1000 which happens in the problem
of a 2-DOF circular cylinder close to a rigid boundary at a PC
cluster consisting of Intel Xeon E31220 processors 3.10 GHz.

2.6. Grid independence and validation of in-house numerical code

In the numerical study by Noor et al. (2009), a uniform flow
past a stationary cylinder using the current DFIB method at Re¼40
and 100 was performed successfully. In their results, the time
history of recirculation length at Re¼40, CD and St of the cylinder
at Re¼100 have good agreement with other literatures. The
numerical prediction of cylinder array in oscillatory flow by
Chern et al. (2012, 2013) has accomplished successfully using the
same DFIB method. The oscillatory flow around a cylinder array in
a square arrangement was simulated and validated by the in-line
force coefficient Cf of the interaction of oscillatory flow with a
single circular cylinder at moderate Keulegan–Carpenter numbers
KC¼2 and 10. In terms of those studies, it turns out that the
proposed DFIB method is capable of simulating fluid–solid inter-
actions and of predicting hydrodynamic loadings on cylinders
properly. In order to ensure that the numerical results are grid
independent especially for free vibrations of a circular cylinder,
several grid configurations are utilized to simulate the transverse
oscillations of a circular cylinder. In this case, the flow and
structural parameters are chosen according to Leontini et al.
(2006) (Re¼200, mn¼10, ζ¼0.01 and Un

R¼3.5). Since the pro-
posed model is established for an unsteady flow, it is interesting to
investigate the influence of the grid from the flow evolution. Four
various corresponding smallest grid spacings of these meshes
(0.1D, 0.05D, 0.025D and 0.020D) are allocated in the vicinity of
the cylinder. The results for the grid independent study are shown
in Fig. 3. As Fig. 3 presents, the time histories of the normalized

Fig. 2. The grid configurations for VIV of an elastically mounted circular cylinder.

t*

Y

0 25 50 75

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1 = 0.100 (7031 cells) 
= 0.050 (14061 cells)
= 0.025 (40391 cells)
= 0.020 (58311 cells)

m*
Re
UR*
ζ

= 10
= 200
= 3.5
= 0.01 x yΔ = Δ

Δ = Δ
Δ = Δ
Δ = Δ

x y
x y
x y

Fig. 3. The grid independent tests of time history of the normalized transverse
displacement of the vibrating cylinder.
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transverse displacement given by Δx¼Δy¼ 0:025 and 0.02 are
very similar and overlap with each other. Therefore, for advancing
the accuracy of numerical results and saving the computational
time, the grid spacing Δx¼Δy¼ 0:025 in the vicinity of the
vibrating cylinder is adopted in the present work. Herein, a total
number of 1257 uniform grid cells are used to describe the
vibrating cylinder.

3. Results and discussion

It is well known that vortex-induced-vibration (VIV) of an
elastically mounted circular cylinder is affected by a group of
parameters including mass ratio mn, reduced velocity Un

R, structural
damping ratio ζ, Reynolds number Re, and so on. A parametric study
is undertaken to investigate the influences of Un

R on the amplitude
and frequency responses of the cylinder. In order to investigate the
capability of the present direct-forcing immersed boundary (DFIB)
model and to predict basic response of a vibrating cylinder, two
various cases are implemented. In the first case, the vibrating
cylinder freely vibrates in the transverse direction as shown in
Fig. 1(a). In the second case, the vibrating cylinder freely vibrates in
both the transverse and in-line directions as shown in Fig. 1(b).

3.1. Transverse vibration

In this study, a uniform flow past an elastically mounted
circular cylinder undergoing single-degree-of-freedom vibrations
is first simulated and the numerical results are compared with the
numerical data by Dettmer and Peric (2006). They used the
Arbitrary Lagrangian Eulerian (ALE) method in this topic. The
computational domain is 40D� 22D and the illustration including
boundary conditions is shown in Fig. 1(a). In this validation study,
the 0.025D mesh size is utilized to simulate the single-degree-of-
freedom problem. In order to facilitate the proposed model, the
simulation parameters are set as same as in the numerical study of
Dettmer and Peric (2006). The mass ratio mn ¼ 149:1, the damping
ratio ζ ¼ 0:0012, and the natural frequency fn¼7.016 are used in
the study. The reduced velocity Un

R varies in the interval between
5.0 and 7.2. The change of Un

R is achieved by altering the flow
velocity, so Re is also changed. Re=Un

R is kept at a constant of 17.96.
Simulations are carried out for Re ranging from 90 to 130 and a fast
Fourier transform (FFT) technique of CL is applied to determining
the vortex shedding frequency in each case.

The time history of the normalized transverse displacement of
the vibrating cylinder for various values of Un

R is presented in
Fig. 4. As a result, the waveform of beating grows in each cycle and
the vibration amplitude increases gradually before it reaches a
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Fig. 4. Time history of the normalized transverse displacement of the vibrating cylinder for various values of reduced velocity.
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maximum value about 0:4D for Un

R � 5:45 after tnZ2000. Mean-
while, it indicates that the movement of the cylinder starts to
synchronize with periodic force on the solid body. Williamson and
Roshko (1988) defined several vortex shedding modes in detail.
The definition of 2S mode is that two single vortices are formed in
each cycle and released from the cylinder. Another vortex shed-
ding mode 2P is given by that two vortex pairs are shed per cycle
alternatively. According to the definition of vortex shedding mode,
the 2S mode is observed in the present study as seen in Fig. 5. The
alternatively shedding of vortices gives a dimensionless frequency,
namely Strouhal number St. Variation in the system response with
Un

R is investigated and the results are summarized in Fig. 6. The
present results show that our data are in good agreement with
Dettmer and Peric (2006). It is found that before and beyond the
lock-in region the vibration amplitude of the cylinder is very small.
It is also noticeable that the maximum amplitude is found near the
lower limit of the lock-in/synchronization region. Another evi-
dence of the synchronization region can be seen in Fig. 7 where
the vortex shedding frequency is obtained by an FFT analysis of
CL and normalized by the reduced natural frequency of structure.

St for a stationary cylinder proposed by Roshko (1953) following
the formula St ¼ 0:212ð1�21:2=ReÞ is superimposed for compar-
ison. It has been observed by a number of researchers in the past
that in the lock-in region. Traditionally, the ratio of vortex shed-
ding frequency to the natural frequency of structure is close to 1.
For a range of values of Un

R from 5.4 to 6.0, approximately, lock-in/
synchronization phenomenon takes place in the present results. In
the present study, the vortex shedding frequency of the vibrating
cylinder exactly matches the natural frequency of the structure in
the lock-in region and a strong evidence in the jump of the
cylinder response is found in the low end of the synchronization
region. Another interesting finding is that beyond or before the
range of Un

R for lock-in region, the vortex shedding frequency
moves back to St for a stationary cylinder. These investigations are
in good agreement with Williamson and Govardhan (2004).

The general trend of the lock-in region is captured well by the
proposed model. Moreover, from the amplitude and the frequency
responses of cylinder, it is found that the present results are
almost consistent with the numerical work using the ALE method
by Dettmer and Peric (2006).
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Fig. 8. Time history of the normalized in-line and transverse displacements of the vibrating cylinder for various values of reduced velocity.
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3.2. In-line and transverse vibrations

Cylinder vibration in the transverse direction plays a significant
role to the cylinder response than the in-line direction. It is well
known in the VIV problems that a freely vibrating cylinder in the in-
line direction has a little effect on the cylinder response. Typically,
an in-line amplitude is significantly smaller than a transverse
amplitude in VIV but their contributions to restricting fatigue life
of the structure can be very important as explained by Bearman
(2011). To further study the interaction between the in-line and the
transverse responses of a freely vibrating cylinder, an elastically
mounted cylinder in a uniform flow is considered. The cylinder is
allowed to vibrate in two-degree-of-freedom at moderate Re. The
system parameters are set according to the numerical works by
Singh and Mittal (2005). The dimensionless mass mn of the cylinder
is 10. To reach a maximum amplitude vibration, the structural
damping ratio ζ is set to zero. In experimental studies, the variation
of Un

R is achieved by varying the inlet velocity. In this sense, Un

R and
Re are independent parameters. In the present numerical model, Re
is fixed at 100 and Un

R varies from 4.0 to 8.5. The variation of Un

R is
achieved by altering the natural frequency of the structure.

3.2.1. Flow patterns and modes of vortex shedding
The time history of the normalized in-line and transverse

displacements of the vibrating cylinder for various values of

Un

R is presented in Fig. 8. As shown in the figure, the amplitudes
of transverse vibrations are significantly higher than those of the
in-line vibrations. It can be found in those figures that the beating
phenomenon exists in the time history of the normalized dis-
placements of the vibrating cylinder at Un

R ¼ 4:4. As Un

R goes
beyond this point, the beating patterns change to the almost
periodic standing wave with a maximum transverse amplitude of
oscillations around 0:55D at Un

R ¼ 4:5. Also, the peak amplitude of
vibrations in the in-line direction is observed at Un

R ¼ 4:5, approxi-
mately. Beyond a certain range of Un

R, the amplitudes of oscillations
in both directions become much smaller. Overview of literatures
about a uniform flow past a stationary cylinder at Re¼100 as seen
from Anagnostopoulos (1994), Shiels et al. (2001) and Singh and
Mittal (2005), the 2S vortex shedding mode is found. The vibrating
cylinder experiences a high amplitude oscillations and excites a
different wake structure as seen in Fig. 9. Despite the vortex
shedding is still in the 2S mode, the vorticity patterns are some-
how different from the conventional 2S mode. The findings are in
good agreement with numerical results reported by Singh and
Mittal (2005) and Prasanth and Mittal (2008). They defined this
pattern as the C(2S) mode of vortex shedding. A ‘2C’ mode which
comprises two co-rotating voices each half cycle was first defined
by Flemming and Williamson (2005). The C(2S) mode is similar to
that of the 2S mode except that vortices coalesce in the wake
behind the body. In the present results, the range of Un

R for the
C(2S) mode is discovered from 4.5 to 5.0. Within this region, the
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Fig. 9. Vortex shedding modes of the vibrating cylinder for various values of reduced velocity.
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maximum amplitude decreases to 0:51D but still shows standing
wave patterns. Out of this region, the wake structure comes back
to the 2S vortex shedding mode. Furthermore, the low amplitude
of vibrations of the cylinder exhibits the 2S mode of vortex
shedding and occasionally, it is C(2S) when the oscillation ampli-
tude is large. It is found that the vortex shedding mode depends
on Un

R.
According to the results obtained by the present numerical

model, it is found that a periodic behavior exists for most of the
cases. The trajectory diagrams indicate that the flow and the
movement of the cylinder are periodic as shown in Fig. 10. Inter-
estingly, the cylinder undergoes a slightly oval-shaped motion
within the lock-in region roughly but a slightly eight-shaped
motion in a range of Un

R from 5.5 to 7.0. At the same time, the
maximum transverse amplitude of vibrations descends from 0:48D
to 0:26D. Also, the C(2S) vortex shedding mode vanishes at this
range of Un

R and it is replaced by the 2S vortex shedding mode. The
attached video shows the vortex shedding patterns of the C(2S) and
2S modes and its corresponding trajectories.

3.2.2. Influence of reduced velocity on the cylinder response
Un

R is a non-dimensional parameter that consists of flow
velocity u1, the natural frequency of the cylinder fn and the
cylinder's diameter D. The physical meaning of Un

R is described in
detail by Yang et al. (2009). It can be explained as the ratio of fluid
force acting on the cylinder and the elastic restoring force of the
cylinder. For VIV of the cylinder, Un

R is a considerable parameter.
Fig. 11 shows the variations of Xmax and Ymax of a vibrating cylinder
with Un

R. It clearly indicates that when Re is fixed, Un

R dominates
the process of VIV of the cylinder. It can be seen that the
amplitudes of the transverse vibrations are significantly higher
than those of the in-line vibrations. In the present study, the peak
amplitude of vibrations in the transverse direction is around
0.55D, which is within 5% discrepancy from that reported by
Singh and Mittal (2005) and it is achieved for Un

R ¼ 4:5. The range
of the lock-in/synchronization region takes place at 4:5rUn

Rr7:4,
approximately. It is also conspicuous that the maximum amplitude
is found near the lower limit of the lock-in/synchronization region
as same as the single-degree-of-freedom problem. The general
response of the cylinder is very similar to the results reported by
Singh and Mittal (2005). The cylinder response obtained from the
present study is in good agreement with that reported by other
researchers as summarized by Williamson and Govardhan (2004)
except for the onset of the lock in region. Within the lock-in
regime, the present study points out that the vortex shedding
frequency is quite close to the natural frequency of the structure as
shown in Fig. 12. Herein, the Strouhal number St is proposed by
Roshko (1953) for a stationary cylinder. Interestingly, beyond or
before the range of Un

R for synchronization, the vortex shedding
frequency moves back to that for a stationary cylinder(St � 0:166).
The variations of CD and CL;rms for two-degree-of-freedom of an
elastically mounted circular cylinder also show the jump behavior
at the low end of the synchronization region as shown in Fig. 13.
From the results of vibrations, compared to a stationary cylinder at
Re¼100, CD and CL;rms for out of the lock-in region are nearly 1.30
and 0.20. It is an evidence that our numerical results are very close
to the data of stationary cylinder at Re¼100 as summarized in
Table 2. Furthermore, it is found that beyond the lock-in region,
the cylinder exhibits a small oscillation amplitude. Meanwhile, in
the synchronization region, the cylinder experiences high aero-
dynamic forces that lead to large amplitudes of oscillation.
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4. Conclusions

Two-degree-of-freedom vortex-induced vibration (VIV) of a
spring-mounted circular cylinder has been simulated successfully
using the direct-forcing immersed boundary (DFIB) method. For
two-degree-of-freedom VIV of the cylinder in a uniform stream,
the peak oscillation amplitudes in both directions appear on the
onset of lock-in/synchronization region. It is found that the
amplitude response in the transverse direction is significantly
higher than that of the in-line direction. Also, the hydrodynamic

coefficients show the jump behavior at the low end of the lock-in
region. Interestingly, the lock-in condition occurs in the slightly
oval-shaped and eight-shaped orbits as shown in the trajectory
diagrams of cylinder movement. From an analysis of the wake
structure behind a freely vibrating cylinder in a laminar flow, it
exhibits that the 2S mode is found at low oscillation amplitude of
the cylinder. The C(2S) mode appears as the oscillation amplitude
becomes large. Moreover, it is noted that beyond or before the
range of Un

R for the synchronization region, the vortex shedding
frequency becomes the same value of a fixed cylinder.

Numerical simulations for an elastically mounted circular
cylinder which is allowed to vibrate in both directions have
showed that the present DFIB method has a good capability to
handle complex VIV problems. In summary, the general trend of
the lock-in region, cylinder movement, vortex shedding mode,
amplitude and frequency responses are predicted reasonably.
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